
Interdisciplinary Journal of Information, Knowledge, and Management Volume 4, 2009 

Editor: Zlatko Kovacic 

Discovering a Decision Maker’s Mental Model with  
Instance-Based Cognitive Mining: 

A Theoretical Justification and Implementation 
David M. Steiger and Natalie M. Steiger 
University of Maine, Orono, Maine, USA 

dsteiger@maine.edu;  nsteiger@maine.edu 

Abstract 
The purpose of this paper is to provide a theoretical justification for, and describe an implementa-
tion of, instance-based cognitive mining (ICM), a process that analyzes multiple decision in-
stances using the inductive learning algorithms of artificial intelligence to generate a mathemati-
cal representation of the decision maker’s mental models, explicitly relating how the decision 
maker implicitly selects and weighs key factors in making decisions within a specific problem 
domain.  The foundation and justifications of ICM are based on three distinct literatures: 1) 
knowledge creation (mental models and knowledge externalization), 2) cognitive science (tacit 
knowledge and instance-based learning), and 3) artificial intelligence (data mining and inductive 
learning networks).  We also propose an architecture that integrates several technologies to cap-
ture and express a decision maker’s mental model, and we develop a prototype ICM software im-
plementation.   

Finally, we describe a preliminary experiment that applies the ICM process to small teams of de-
cision makers that tests (and supports) two hypotheses: H1: the ICM-derived mental model repre-
sentation provides the mediating causal process through which the set of key factor values affects 
the actual decisions made by a team of decision makers; and H2a: the ICM-derived mental model 
representation is consistent with the  team’s self-reported algebraic, directional, or tacit relation-
ship(s), and the team’s self-reported key factors; or H2b: any significant differences between the 
ICM-derived mental model representation and the team’s self-reported relationships or key fac-
tors are not consistent with the team’s actual decisions. 

Keywords: cognitive science, cognitive mapping, decision support systems, knowledge manage-
ment, externalization, inductive learning algorithms, mental models, tacit knowledge. 

Introduction 
A decision maker’s knowledge involves both explicit and tacit knowledge (Choo, 1998; Daven-

port & Prusak, 1998; Sun, Merrill & 
Peterson., 2001).  Explicit knowledge is 
defined as knowledge that can be ex-
pressed formally and can, therefore, be 
easily communicated or diffused 
throughout an organization (Choo, 
1998).  In decision making, explicit 
knowledge can be found in trade jour-
nals, executive speeches, written proce-
dures, etc.  On the other hand, tacit 
knowledge consists of subjective exper-
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tise, assumptions, and insights that an individual develops from being immersed in an activity or 
profession for an extended period of time (Choo, 1998; Reber, 1989).  Tacit knowledge is inte-
grated and stored in the form of mental models that become so ingrained in the decision maker’s 
thought processes that they are instinctive and thus not easily verbalized or communicated (Kear-
ney & Kaplan, 1997; Tsoukas, 2003).  Once formed, mental models provide the decision maker 
with a method of filtering and processing data and information within a specific decision domain, 
generating potential alternatives, simulating the outcomes of those alternatives, and evaluating the 
outcomes with respect to an appropriate set of criteria (Johnson-Laird, 1983; Senge, 1990; Weick, 
1990); i.e., mental models form the basis of decision making.  More generally, mental models 
provide the internal representation of reality to the individual (Nonaka & Konna, 1998) and be-
come the center of all knowledge creation, learning, and (potentially) improved decision making.  
As such, they are the critical component of knowledge creation, a theory which requires that tacit 
mental models be made known explicitly; however, there exists minimal theoretical or practical 
direction for implementing this requirement.   

The purpose of this paper, which is also its contribution to the literature, is to provide a theoreti-
cal justification for, and describe an implementation of, instance-based cognitive mining (ICM), a 
process that analyzes multiple decisions made by an individual (or small team of individuals) in a 
specific decision domain, using inductive learning algorithms and regression to generate a ma-
thematical representation of the decision maker’s mental model, explicitly relating how the deci-
sion maker implicitly selects and weighs key factors in making decisions.  The foundation and 
justifications for ICM are based on three distinct literatures: 1) knowledge creation (mental mod-
els and knowledge externalization), 2) cognitive science (tacit knowledge and instance-based 
learning), and 3) artificial intelligence (data mining and inductive learning networks).  We also 
propose an architecture that integrates several technologies to discover and measure mental mod-
els and we develop a prototype ICM implementation.  Note that the ICM process is applicable to 
both individual decision makers and small teams of decision makers; in the latter, the team must 
form a consensus for each decision situation.  This consensus forming requirement encourages 
team members to share both tacit and explicit knowledge during the decision process, a comple-
mentary “externalization” process as suggested in Nonaka’s (Nonaka & Takeuchi, 1995) knowl-
edge spiral. 

Finally, we describe a preliminary experiment that applies the ICM process to small teams of de-
cision makers that tests (and supports) two hypotheses: H1 – the ICM-derived mental model rep-
resentation provides the mediating causal process through which the set of key factor values af-
fects the actual decisions made by a team, with no a priori knowledge of which factors were ac-
tually used in its decisions, algebraic relations between these key factors (e.g., cross terms, 
squared terms, inverse relationships, etc.), or  relative weighting of the factors; and H2a –  the 
ICM-derived mental model representation is consistent with the team’s self-reported algebraic, 
directional, or tacit relationships, and the self-reported key factors; or H2b –  any significant dif-
ferences between the ICM-derived mental model representation and the team’s self-reported rela-
tionships or key factors are not consistent with the team’s actual decisions. 

ICM can be classified as a technique within the extended theory of cognitive mapping.  In this 
theory, cognitive mapping is defined as the process of capturing and describing the important fea-
tures of an individual’s mental model in a specific decision domain, including the assumptions, 
key factors (conceptual, logical, physical), and their interrelationships (temporal, causal, spatial, 
mathematical) (Kearney & Kaplan, 1997).  Current cognitive mapping techniques span a wide 
variety of assumptions, inputs, processing, and outputs, and have been categorized, reviewed, and 
compared by several researchers (e.g., Carley & Palmquist, 1992; Hodgkinson, 1997; Huff, 1990; 
Jonassen & Grabowski, 1993; Mohammed, Klimoski & Rentsch, 2000; Walsh, 1995).  ICM is 
unique when compared to existing cognitive mapping techniques in each of three basic character-
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istics; specifically, ICM’s input is a set of decision instances, its primary processing technique 
includes inductive learning networks, and its output is a mathematical (perhaps nonlinear) repre-
sentation of the relationships between the decisions and the associated situations represented by 
key factor values.   

The paper is organized as follows. In the next section, we provide the theoretical foundation and 
justifications for ICM as a process for discovering a decision maker’s mental model.  In the third 
section, we describe the ICM process, in general, and our software implementation, in particular.  
In the fourth section, we describe a preliminary test of ICM and provide the test results. In the 
fifth section, we present a summary of our research and propose several areas for future research. 

Theoretical Justification of Instance-based 
Cognitive Mining 

The theoretical justifications for ICM’s foundation and assertions are based on three distinct lit-
eratures: knowledge creation, cognitive science, and artificial intelligence.  Each of these litera-
tures also suggests important characteristics that ICM’s implementation should incorporate.  

Theoretical Justification from Knowledge Creation 
Nonaka’s theory of knowledge creation (Nonaka & Takeuchi, 1995) views tacit knowledge and 
explicit knowledge as complementary entities and suggests that there is a knowledge spiral, be-
ginning and ending with the decision maker, that can create, amplify, and crystallize new knowl-
edge.  This knowledge spiral consists of sharing tacit knowledge between individuals (socializa-
tion), converting tacit knowledge into explicit knowledge (externalization), integrating this ex-
plicit knowledge with other explicit knowledge (combination), and forming, updating, and/or en-
hancing the mental model held in the mind of the decision maker (internalization).  The knowl-
edge spiral is driven by the conversion of tacit knowledge (i.e., the decision maker’s mental 
model) into explicit knowledge so that it can be shared with and analyzed by others and combined 
with other explicit knowledge to improve decision making.  To ignore this tacit-to-explicit con-
version process is to cripple the individual’s and firm’s knowledge creation process and stifle or-
ganizational learning.  That is, externalizing a decision maker’s mental model is “the quintessen-
tial knowledge creation process” (Choo, 1998, p. 122), the very heart of improved decision mak-
ing (Davenport & Prusak, 1998, p. 8), and the key to enhancing the long-term competitive advan-
tage of the firm (Nonaka & Takeuchi, 1995).  And yet, mental model externalization is the most 
problematic stage of the knowledge spiral.  Except for a general listing of platitudes (Nonaka & 
Konna, 1998, p. 44) that have been found ineffective to date (Becerra-Fernandez & Sabherwal, 
2001, p. 48), this all important step is largely unaddressed in terms of implementing Nonaka’s 
theory.   

For example, Becerra-Fernandez and Sabherwal (2001), in an empirical study focusing on per-
ceived knowledge satisfaction in a technical organization (NASA’s Kennedy Space Center), 
found that although knowledge externalization significantly influenced perceived knowledge sat-
isfaction, externalization experienced very low levels of usage.  Their conclusion was that 
“greater efforts are necessary to build tools and techniques that facilitate (knowledge) externaliza-
tion” (Becerra-Fernandez & Sabherwal, 2001, p. 48).  Further, “externalization processes require 
new approaches, unlike internalization processes that benefit from teaching and training methods” 
(Sabherwal & Becerra-Fernandez, 2003, p. 249).  These conclusions form a major justification 
for our research and development efforts in ICM. 
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Theoretical Justification from Cognitive Science 
In cognitive science literature, instance-based learning has been a staple of research for the last 
25+ years (Gonzales, Lerch, & Lebiere., 2003; Simon & Gobet, 1996).  An instance is defined as 
a triplet consisting of a set of task-relevant factors, a solution or decision based on those factors, 
and the outcome of the decision and its utility to the decision maker (Gonzales et al., 2003); dif-
ferent situations are represented by different values of the factors that describe the situation, lead-
ing to (potentially) different decisions.  Decision makers learn to focus on those instance factors 
that they judge to be most relevant, ignoring other irrelevant factors (Simon & Gobet, 1996), 
combining those key factor values and the decision maker’s mental model to make decisions 
(Johnson-Laird, 1983; Senge, 1990, Weick, 1990).  Thus, instance-based learning provides the 
theoretical foundation for ICM, with the analysis of a set of the individual’s actual decisions pro-
viding the best indication of his/her mental model.  That is, given that the instance is the basis of 
learning how to make the decision and that the storage/retrieval of instances (or chunks of in-
stances) is the mechanism used in applying the individual’s knowledge to new decision making 
situations (Gonzales et al., 2003; Simon & Gobet, 1996), then it is logical that the analysis of 
multiple decision instances should provide the most direct and rational basis for determining the 
decision maker’s tacit mental model, as well as revealing any related explicit knowledge. 

The cognitive science literature also suggests that decisions are based on both explicit (declara-
tive) and tacit (procedural) knowledge (Sun et al., 2001; Sun & Peterson, 1998).  Declarative 
knowledge is explicit, generic knowledge (e.g., instructions, relevant data, written procedures) 
concerning how to make a decision in a specific domain; once learned, declarative knowledge is 
mentally accessible to the decision maker and can, therefore, be used to explain how and why a 
decision was made.  On the other hand, procedural knowledge is tacit, experiential knowledge 
developed by making multiple decisions in a problem domain; it is based on subconscious proc-
essing and is mentally inaccessible to the decision maker in explaining how or why a decision 
was made (Fiol & Huff, 1992; Gonzales et al., 2003; Schraagen, 1993;Tsoukas, 2003;).  Both 
types of knowledge are critical in making decisions in complex environments, and both types of 
knowledge vary with decision making experience, with tacit knowledge representing at least a 
significant, if not the dominant, portion of the overall decision making knowledge (Gonzales et 
al., 2003; Reber, 1989; Sun et al., 2001).  However, since tacit knowledge is inaccessible to the 
decision maker in explaining how/why a decision is made, the interviewing of decision makers to 
determine cause/effect relationships, decision schemas, or expert rules will omit a major compo-
nent of knowledge employed by the decision maker, specifically, all or a major portion of the 
tacit procedural knowledge.  On the other hand, ICM analyzes actual decisions, each of which 
utilizes all the tacit and explicit knowledge the decision maker(s) deems relevant (Sun et al., 
2001; Sun & Peterson, 1998).   

Theoretical Justification from Artificial Intelligence 
In the literature of artificial intelligence (AI), instances (usually referred to as cases) are also a 
mainstay of learning and decision making in both repetitive and novel situations (Gilboa & 
Schmeidler, 2000).  Case-based reasoning and case-based learning state that learning and reason-
ing occurs through the storage and analysis of many cases containing the same triplets of key fac-
tor values, decisions, and outcomes discussed in cognitive science (Gilboa & Schmeidler, 2000; 
Kolodner, 1993; Reisbeck & Schank, 1989).  This suggests that the decision instance (case) 
should be the elemental unit of analysis for ICM’s mental model discovery.   

Additionally, one of the highest priority research topics and the fastest growing areas of AI appli-
cations during the past 15 years has been knowledge discovery in databases (KDD).  KDD is de-
fined as the nontrivial extraction of implicit, previously unknown and potentially useful informa-
tion from databases: i.e., the discovery of patterns that are both interesting and sufficiently certain 
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to be of value to the decision makers (Marakas, 2003).  The theory and technologies of KDD are 
directly applicable to the analysis of multiple decision instances in ICM.  That is, if we think of 
the multiple decision instances as multiple tuples in a relational table, and the factors and deci-
sions as the attributes, then KDD theory in general, and self-learning inductive technologies in 
particular (e.g., GMDH (Farlow, 1984; Ivakhnenko, 1971)), should provide a viable source of 
relationships between decisions and key factors: i.e., a mathematical representation of the deci-
sion maker’s mental model.  

Instance-Based Cognitive Mining 
The sections below discuss the ICM assertions, ICM instances, the ICM process, and the associ-
ated software in our initial implementation. 

ICM Assertions 
ICM asserts, based on the literature discussed above, that decision making integrates explicit de-
clarative knowledge (e.g., facts, data, written procedures, rules) and tacit procedural knowledge 
(i.e., mental models); an individual’s knowledge varies over time and with experience, but tacit 
knowledge is always a significant, if not the dominant, component.  Further, a decision maker 
usually cannot describe his/her own tacit mental model; rather, a mental model must be hypothe-
sized, and tested by observing actual decisions or actions (Argyris & Schön, 1996, pp.16-17).  
Within a specific domain, a decision maker relies on certain key factors in evaluating decision 
alternatives; different values for one or more of these key factors may lead to different decisions.  
That is, when presented with a decision situation in a specific problem domain, a decision maker 
first determines the appropriate values of self-selected key factors and then “executes” his/her 
mental model of the decision domain (incorporating any relevant explicit knowledge) to evaluate 
the alternatives, estimate potential outcomes, and make the best decision.  Finally, ICM asserts 
that inductive analysis of multiple decisions made by an individual (or small team of individuals) 
in a specific problem domain can be employed to derive a mathematical representation of the 
mental model actually used; this derived model will be a function of the individual’s key factors 
and will explicitly relate how the decision maker implicitly uses and weighs these key factors in 
decision making. 

ICM Instances 
ICM defines an instance as the values of key factors that together define a specific situation in a 
decision domain.  With respect to the cognitive science definition of “instance”, our definition 
could more appropriately be termed a “pre-decision instance”; after the decision is specified, it 
could be termed a “post-decision instance”; and after the decision has been implemented and au-
dited, it could be termed an “evaluated instance”.  To simplify the discussion below, we refer to 
all three as “instances”, and let the context determine the specific type of instance. 

ICM Process 
Based on the requirements and characteristics dictated by the three literatures discussed in the 
previous section, we propose the ICM system architecture shown in Figure 1.  This logical de-
sign, independent of any specific software or hardware implementation, is discussed below in 
terms of the modules of Figure 1.  It follows the ICM multi-step process that begins by delineat-
ing the decision domain and generating, in the Key Factor Module, an initial set of potential key 
factors for making decisions.   
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Key Factor Module 
Potential key factors can be generated by applying any one of several techniques.  For example, 
the decision maker(s) can be asked, after a brief tutorial and explanation, to draw an influence 
chart, an easily learned diagramming technique that depicts the outcome variables (decisions) that 
are of interest in the decision domain and the input variables (key factors) that influence those 
decisions (Clemen, 1991; Powell & Baker, 2007).  Influence diagrams provide a method of speci-
fying an initial set of explicit, and perhaps tacit, key factors used in the decision maker’s mental 
model. 

 
Alternatively, structured brainstorming, such as Synectics (Gordon, 1961; Prince, 1970) or its 
electronic equivalent of group support systems (Nunamaker, Briggs, Mittleman, Vogel, & Bal-
thazard, 1997), can be used in small groups to discover factors that decision makers use to struc-
ture and form their decisions.  Synectics is both a theory and process that “applies to the integra-
tion of diverse individuals into a problem-stating, problem-solving group” (Gordon, 1961, p. 3).  
Such structured brainstorming is sometimes used in other cognitive mapping techniques such as 
causal mapping. 

Another source of the potential key factors might be a mathematical model of the decision do-
main.  For example, a visual interactive simulation model of a Ford Motor Company engine as-
sembly plant helped to generate key factor values and decision instances that described situations 
in which machine failures occurred.  Such machine failures required human decisions to deter-
mine who should be assigned to repair the machine and when the repair should be scheduled (Ro-
binson, Alifantis, Edwards, Ladbrook, & Waller, 2005).   

A final source of potential factors might be the conceptual analysis of the decision domain by 
strategic planners (Hodgkinson, Brown, Maule, Glaister, & Pearman, 1999; Senge, 1990), gener-
ating key factors and decision instances (scenarios) representing future states of the indus-
try/world.  Such scenarios have long been the cornerstone of strategic planning and chang-
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ing/enhancing top managers’ mental models at Royal Dutch/Shell (Schoemaker, 1993; Senge, 
1990). 

Instance Generator Module 
From this set of potential factors, the researcher builds a set of 15 or more (depending on the 
number of factors) rationally formulated instances that are representative of the decision space; 
i.e., a set of instances that optimally covers the decision space with a minimal number of in-
stances (to avoid decision maker fatigue).  Such instances, specified in the Instance Generator 
Module (Figure 1), may include a firm’s historical cases, future competitive scenarios proposed 
by corporate planners (Senge, 1990), and/or the ‘what-if’ cases generated by a decision maker 
exploring uncertain decision variables in a mathematical model of the decision domain (Steiger & 
Sharda, 1996).   

User Interface Module 
The instances, with each instance containing appropriate values of the key factors but without 
decisions, are then presented as a set to the decision maker(s) (via the User Interface Module in 
Figure 1).  Since different individuals may rely on different key factors in the same decision do-
main, the ICM process encourages the decision maker to specify additional key factors not in-
cluded in the initial instances.  If a new factor is independent of the original factors, the user is 
prompted for a representative range of values for that factor.  Alternatively, if the new factor is an 
explicit, quantifiable function of one or more of the original factors, the user is prompted for a 
relevant algebraic expression or formula.  Finally, if the new factor is tacitly dependent on one or 
more of the presented factors, the decision maker can intuitively specify a value of the new factor 
for each instance.  These additional factors and the appropriate ranges, intuitive values, or alge-
braic expressions are then returned to the Instance Generator to generate a new set of instances 
that includes both the original and the new key factors.  Note that by allowing the decision maker 
to specify new factors that are either tacitly or explicitly dependent on the initial factors, ICM 
provides for knowledge “chunking”, thereby extending the limitations of 7 ± 2 factors normally 
considered simultaneously in short-term memory (Simon, 1974).   

The decision maker may also create one or more additional instances by specifying a value for 
each of the factors; these instances, which may represent historical situations with which this spe-
cific decision maker is familiar, are then included with the original instances.  By providing this 
capability, ICM eliminates the potential problems caused by a researcher’s initial set of instances 
(unalterable by the decision maker) introducing a bias in the decision making and the resulting 
mental model estimate. 

Once all new factors and instances are generated, the user is prompted for a decision in each in-
stance, basing that decision on what s/he considers to be key factors, the relative values of those 
key factors, and his/her mental model.  Note that in this process, the decision maker uses his/her 
mental model to implicitly or explicitly select any subset or superset of the factors initially pre-
sented in each instance.  For example, if values for factors A, B, C, and D are initially included in 
each instance, and the decision maker thinks that only factors A and C along with the new factor 
E are important, then s/he quite naturally specifies the decisions based on only the values of A, C 
and E, ignoring B and D values completely.   

Analysis Module 
The resulting instances, along with the associated decision for each instance, are stored in the In-
stance and Decision Database (Figure 1).  The set of instances is then fed into the ICM Analysis 
Module for processing.  This module features both linear regression software (for linear estimates 



Decision Maker’s Mental Model 

8 

of mental models) and inductive AI learning algorithms (for nonlinear estimates of mental mod-
els).  One such nonlinear inductive algorithm is the Group Method of Data Handling (GMDH) 
(Farlow, 1984; Ivakhnenko, 1971), a family of inductive self-organizing algorithms that can be 
thought of as a cross between (non)linear regression and artificial neural networks.  Each algo-
rithm in the Analysis Module generates one mental model estimate based on the decision in-
stances. 

As part of the ICM analysis, the decisions are checked for inconsistencies.  Note that these are 
inconsistencies with respect to one set of decisions; i.e., each set of decision instances presented 
to the decision maker (or team) is analyzed as an single entity, with the analysis and inconsisten-
cies totally independent of the other sets of decisions made by other decision makers/teams, and 
independent of any theoretical model.  Inconsistent decisions may be caused by clerical error, 
lack of information/knowledge, lack of concentration, lack of real world consistency, decision 
maker fatigue, and/or inadequate mental model structure (Forman & Selly, 2001).  Inconsisten-
cies may not be necessarily bad; in fact, they may be the source of generating new knowledge by 
the decision maker as s/he searches tacit and/or explicit knowledge to determine the cause of the 
inconsistencies, whether it be heretofore unrealized key factors, factor weighting, etc. (Gabbay & 
Hunter, 1991)   

Inconsistent decisions are revealed by implementing a version of Wagner’s (1995) ‘all save one’ 
algorithm in which the ICM Analysis Module is repeatedly called with (n-1) instances, excluding 
a different instance (row) in each different run, and comparing the results; a result with a signifi-
cantly higher value for the coefficient of determination, adjusted R2, and/or a more parsimonious 
model indicates that the inconsistent decision has been excluded.  Any inconsistent decision(s) 
are fed back to the decision maker, including comparisons with other instances to highlight the 
inconsistency; the decision maker/team is then requested to either validate the decision or correct 
the inconsistency.   

Model Selection Module 
ICM’s Mental Model Selection Module is used to select the “best” model or sub-model of the 
several mental model estimates generated by the different algorithms in the Analysis Module.  
The selection criterion is based on a combination of explanatory power (adjusted R2, and model 
parsimony; other evaluation criteria that could be included in the selection process are sufficiency 
(whether the estimated model is sufficient to depict the mental model), necessity (whether all 
terms in the estimated mental model are required to depict or understand the mental model), etc. 
(Steiger, 1998). 

ICM’s best estimate of the mental model is then displayed to the decision maker for evaluation.  

Software Support of the ICM Process 
The software support of our ICM implementation focuses on the Instance Generator, User Inter-
face, Instance Database, and Analysis modules.  That is, the initial set of decision instances is 
input by the researcher via interactive PHP forms; PHP is a scripting language that is especially 
suited for developing web-based, interactive forms (Ullman, 2001).  Interactive PHP forms (e.g., 
Figure 2) are also used to capture additional key factors specified by the decision maker and the 
corresponding ranges of values (via clicking the “AddFactor(1)” option in Figure 2), formulae 
(via clicking the “AddFactor(2)” option), or intuitive values (via clicking the “AddFactor(3)” op-
tion).  Interactive PHP forms are also used to add instances (via clicking the Add Cases option) 
and to specify decisions (via keying in the decision into the “Results” column) for each instance.  
The instances are stored in a MySQL database (Ullman, 2001). 
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The Analysis Module has been implemented as a loosely-coupled, multiple algorithm software 
system, including Microsoft Excel with PHStat addin (Stephen, 2007) (to generate linear esti-
mates of the decision maker’s mental model), inductive learning networks (to generate nonlinear 
estimates of the mental model), and an implementation of Wagner’s (1995) ‘all-save-one’ algo-
rithm (to detect a decision in one instance that is inconsistent with decisions made by the same 
individual/team in other instances).  Inductive learning networks represent a family of self-
organizing inductive learning algorithms that employ multi-layered, cascading networks of inter-
connected nodes used to model nonlinear relationships.  Inductive learning networks generate a 
mathematical model that, in this application, explains variations in the instance decisions based 
on variations in the values of the corresponding key factors in each instance.  Since inductive 
learning networks are a family of algorithms, with each member of the family based on slightly 
different modeling assumptions (e.g., partial quadratics, partial cubics, ratios of polynomials, 
etc.), two such algorithms are used in our ICM prototype implementation:  KnowledgeMiner, 
available at www.knowledgeminer.com/, and PolyAnalyst’s FindLaws, available at 
www.megaputer.com/.   

 
Figure 2: Screenshot of ICM--instance key factor values with column for decisions  

(labeled "Results"). 

KnowledgeMiner (Müller & Lemke, 2003) is a commercially available implementation of the 
GMDH algorithm that provides (non)linear additive (quadratic) polynomials to estimate the deci-
sion maker’s mental model, without requiring any prior knowledge concerning which key factors 
to include, or the form of any relationships between those key factors (i.e., interactions terms, 

http://www.knowledgeminer.com/�
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squared terms, etc.).  For each model, KnowledgeMiner also calculates and provides various pre-
dictive statistics (PESS, MAPE, R2, adjusted R2, and descriptive power) for the estimated model, 
as well as a chart of the estimated vs. actual values of the dependent variable.  In this application, 
adjusted R2 provides a measure of the consistency of the indicated decisions.   

PolyAnalyst’s FindLaws is another commercially available implementation of inductive learning 
networks, but instead of an additive quadratic polynomial model, it produces a nonlinear estimate 
of the decision maker’s mental model based on a ratio of polynomials.  Like GMDH algorithms, 
it requires no prior knowledge concerning which key factors to include or the form of any rela-
tionships between those key factors (i.e., interactions terms, squared terms, etc.).  For the final 
model, PolyAnalyst FindLaws also provides the standard error, standard deviation, model signifi-
cance, and coefficient of determination, as well as a chart of the estimated vs. actual values of the 
dependent variable.  

Since neither of these software packages was available to us as a dynamically linked library rou-
tine (callable from a PHP form), our initial prototype implementation of ICM requires manual 
intervention in the Analysis Module; future versions will fully automate this module.   

A Preliminary Test of ICM 
As a preliminary test of ICM in a business environment, assume the decision domain is that of the 
classical warehouse location problem (Geoffrion, 1976) in a new market area that includes thir-
teen cities, all located in Central Texas, with a single source of supply in Los Angeles.  The prob-
lem is to determine the best number of warehouses required to serve the marketing cities at the 
lowest overall cost.  There must be at least one, and no more than thirteen, warehouses, with each 
selected warehouse located in one of the demand cities.  Each warehouse must have sufficient 
throughput capacity to serve the total Central Texas market area.   

To illustrate the ICM analysis characteristics and capabilities using small teams of student deci-
sion makers, we integrated the warehouse location problem into a (required) MBA Operations 
Analysis course.  Of the 30 MBA students participating in this study, the average age was 30, 
with a third of the participants being women.  Further, one third of the participants had manage-
rial experience (on average, 4.2 years of managerial experience).  Undergraduate degrees held by 
our subjects included 40% with technical degrees, 33% with business degrees, and 27% with oth-
er degrees.   

The class was divided into thirteen small teams, and each team, in succeeding weekly homework 
assignments, developed an influence diagram of the warehouse location problem, completed 
spreadsheet sensitivity exercises using the events (key factors) noted in their influence diagrams, 
and developed a linear programming approximation of the problem.  This course integration was 
aimed at developing and enriching the students’ expertise (i.e., their mental models) in this deci-
sion domain.   

The influence diagrams, which help externalize the tacit and explicit knowledge in each team’s 
mental model, were analyzed to generate an initial set of four factors that were common to all 
thirteen of the teams’ influence diagrams.  These four factors consisted of the forecasted product 
demand, d, the fixed building costs, f, of each warehouse, the unit transportation cost, T, from the 
Los Angeles factory to the warehouses in Central Texas, and the unit transportation costs, t, from 
the warehouse to the demand city.   

After the linear programming model was developed by each team, we introduced one additional 
factor, the delivery service s, a categorical variable indicating the time between placing an order 
and receiving the ordered goods from the closest warehouse (1 = same day delivery, 0 = next day, 
and -1 = two business days delivery).   
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This set of five factors, representing an initial factor set based on the tacit and explicit knowledge 
of each team (as indicated by their influence diagrams), was then used to generate a set of 17 de-
cision instances that efficiently covered the decision space (Figure 2).  Note that there is an inher-
ent conflict in the number of decision instances used in the ICM process; i.e., more instances 
would provide greater statistical reliability and confidence in the ICM estimate of the mental 
model.  However, more instances would also increase the risk of exceeding the decision maker’s 
attention span, introducing decision maker fatigue and decision inconsistencies, resulting in lower 
statistical reliability in the ICM estimate.  In preliminary tests of the ICM software, we included 
as many as 48 instances in the warehouse model application (using the same five factors) and 
found that the ICM process produced the same results regardless of the number of instance down 
to the 12-15 instance level, as long as the remaining instances covered the decision space rela-
tively well.  Unfortunately, the 48 instances required well over an hour to complete by the deci-
sion makers, leading to decision maker fatigue and explaining some of the inconsistency in deci-
sions. 

The five factors in this set of instances were also tested for colinearity by calculating the variance 
inflationary factors (Levine, Stephan, Krehbiel & Berenson, 2005); based on the criteria devel-
oped by Snee (1973) there was little evidence of colinearity.   

Each team was presented with the 17 different decision instances, consisting of the five factors 
and a blank input column for decisions (Figure 2).  Decision makers were encouraged to ignore 
any irrelevant factors, to add any new instances with which they were familiar by clicking the 
“Add Cases” button, and add new key factors as needed by clicking one of the three buttons la-
beled “Add Factor” (1), (2), or (3).  They were then asked to analyze the decision instances, de-
termine the best number of warehouses, n, to build in each instance (being as consistent as possi-
ble), and specify the team’s decision in the ICM “Results” column.  Note that each team was re-
quired to reach a consensus decision on each decision instance; this resulted in significant discus-
sion among team members as they detected, evaluated, and explained their individual differences 
in decisions based on (the externalization of) their individual assumptions and mental models.   

Each team also filled out a questionnaire requesting additional information concerning their men-
tal model of the decision domain, including a self-estimate of their decision consistency, a list of 
factors that they used in the decision making process, a list of those factors explicitly ignored, and 
a mathematical representation of their mental model, if any.   

Expected Results 
Geoffrion (1976) developed a mixed integer/linear programming model of the warehouse location 
problem during a consulting assignment at Hunt-Wesson Foods.  Using this mathematical model, 
several simplifying assumptions (specifically, that the forecasted demand was the same for each 
city, the fixed building costs of each warehouse were the same at each potential warehouse loca-
tion, and all warehouse locations were in the same shipping zone from the product source), hu-
man expertise, and mathematical manipulations, he developed an insight generating simplified 
auxiliary model for the optimal number of warehouses, n, in an area of A square miles as: 

n=(A/3.05)* (d * t / f) 2/3,    Eq. 1 

where d = the demand in each city, t = the unit transportation cost from the nearest warehouse to 
the demand city, and f = the fixed costs associated with building each warehouse.  Geoffrion’s 
analysis did not include the irrelevant (to the optimized results) factory-to-warehouse transporta-
tion cost, T, or the delivery service factor, s, in the model. 

In a pre-test application of the ICM process to the warehouse location problem given to different 
students in a previous semester, we found that the student decision makers reported using additive 
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formulae in their mental models, with positive coefficients associated with demand, transporta-
tion costs and delivery service (i.e., increases in the values of these key factors from instance to 
instance resulted in increases in the optimal number of warehouses), and a negative coefficient 
associated with the fixed warehouse building costs (i.e., increases in the fixed building costs re-
sulted in decreases in the optimal number of warehouses).  These straightforward additive mental 
models were to be expected given the students’ relative inexperience in the decision domain.   

To provide a component of diversity in the results generated by the 13 teams in the current test, 
we emailed suggestions to just over half of the teams (specifically Team #1 through #7) that the 
optimal number of warehouses is best determined by using a multiplicative relationship between 
the key factors versus an additive relationship.  That is, we coached these teams to “multiply key 
factors instead of adding them, and divide key factors instead of subtracting them.”  Note that if 
the decision maker’s mental model is totally tacit, this coaching should have little or no effect. 

Experimental Research Issues 
We tested two research hypotheses.  Stating these hypotheses in terms of mediated models (Baron 
& Kenny, 1986), the cognitive science literature suggests that there is a mediating causal process 
(a mental model in this research), MM, that provides the mechanism through which the factors 
describing decision making instances, F, affect the actual decisions, D, made in the instance (Fig-
ure 3).  The artificial intelligence literature suggests that inductive learning networks, (e.g., 
GMDH), can be applied within the ICM process to generate a mathematical representation of this 
mental model.  Thus, our first hypothesis is: 

H1: The ICM-derived mental model representation, DMM, provides the mediating causal 
process through which the set of factor values, F, affects the actual decisions, D, made by 
the team. 

 

 
Note that the set of factor values, F, (that describe each decision situation) may contain a subset 
of the initial factors presented to the decision maker(s) or a superset of those factors after inclu-
sion of additional factors (and associated values) specified by the individual/team.  Further note 
that the ICM process requires no a priori knowledge of which factors the team actually used in its 
decisions, the algebraic relations between these key factors (e.g., cross terms, squared terms, in-
verse relationships, etc.), or the relative weighting of the factors or terms.   

The cognitive science literature also suggests that a decision maker’s mental model consists of 
both explicit and tacit knowledge, with tacit knowledge representing at least a significant portion, 
and often a dominant portion, of the overall knowledge.  Explicit knowledge is accessible to the 
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decision maker in explaining how/why a decision is made, i.e., in providing a self-reported men-
tal model.  A self-reported mental model may be expressed as an algebraic relationship, a direc-
tional relationship (e.g., “as x increases, y increases”), or an (unspecified) tacit relationship with 
only the key factors reported.  Thus, the first part of our second hypothesis is: 

H2a): The ICM-derived mental model representation is consistent with each team’s self-
reported algebraic, directional, or tacit mental model relationships, and each team’s key 
factors.  

Finally, the literature suggests that tacit knowledge is often inaccessible to the decision maker in 
explaining how or why a decision was made; i.e., in providing a self-reported mental model.  That 
is, a self-reported relationship may be inconsistent with the actual decisions made by the individ-
ual or team, due to this inaccessibility of tacit knowledge or a desire for political correctness (e.g., 
not wanting to admit to racial bias), etc.(Argyris & Schön, 1996 ).  Such inconsistencies can be 
detected in the ICM process and form the basis for the second part of our second hypothesis:   

H2b): Any significant differences between the ICM-derived mental model representation 
and the team’s self-reported mental model or key factors are not consistent with the 
team’s actual decisions. 

Actual Results 
After developing (via the influence diagrams), modifying (based on factors and instances added 
by the team), and saving (in the MySQL database) the instances and the team’s final decisions, 
the set of instances (including decisions) was passed to the Analysis Module.  In the Analysis 
Module, ICM generated three potential estimates of each team’s mental model:  1) a linear esti-
mate based on multiple linear regression, using the best-subsets approach to model building as 
suggested by Levine et al. (2005, pp. 637-642); 2) a nonlinear estimate based on the ratio of poly-
nomials algorithm of PolyAnalyst FindLaws; and 3) a nonlinear estimate based on the additive 
polynomial GMDH algorithm of KnowledgeMiner.  The best one of these three mental model 
estimates was then selected based on model simplicity and adjusted R2.  Adjusted R2, versus sim-
ply R2, is used since it adjusts for both the number of key factors (i.e., explanatory variables) and 
the number of decision instances (sample size) used in ICM’s estimated model (Levine et al., 
2005, p. 580). 

Table 1, Column 2 summarizes ICM’s best mental model estimate for each of the thirteen teams 
participating in the test; each estimate is significant at the 1% level indicating that there is a very 
low probability that we would have obtained the ICM model if the true values of the model coef-
ficient(s) were zero.  As seen in the table, ICM discovered additive linear models for seven of the 
thirteen teams, all of which included negative coefficients for the fixed building costs, f, and posi-
tive coefficients for all other key factors that were included in the team’s model; the lone excep-
tion was one negative coefficient for demand, d, in Team #13’s estimated model.  The adjusted 
coefficients of determination, adjusted R2, of the seven linear models ranged from 81% to 89% 
(Table 1, Column 3).  For the remaining six teams, ICM discovered nonlinear models with ad-
justed R2 values ranging from 82% to 100%.   
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Note that the seven linear ICM mental model estimates (Team #1, #2, #4, #9, #10, #11, and #13) 
are models that are linear in the original factors (i.e., demand in each city, d, unit transportation 
cost from the nearest warehouse to the demand city, t, fixed costs associated with building each 
warehouse, f, factory-to-warehouse transportation cost, T, and delivery service factor, s) and, 
therefore, linear regression is appropriate for finding the best fit coefficients for these estimated 
mental models.  One ICM mental model estimate (#12) contains a cross product of the original 
factors (i.e., demand times warehouse-to-city transportation cost), and, according to Seber & 
Wild (2003, p. 5), since it is linear in the parameters (coefficients) of its terms, linear regression is 
also appropriate for finding the best coefficients for this decision team’s mental model estimate.  
The other five ICM mental model estimates (Team #3, #5, #6, #7, and #8) are provided by the 
proprietary algorithm of PolyAnalyst FindLaws and, whereas they are nonlinear with respect to 
the original factors, the proprietary algorithm’s term when considered as a whole is linear in the 
one best fit parameter (coefficient) for the single overall term (e.g., the 5.23 coefficient in team 
#7’s estimated mental model).  Thus, linear regression analysis is appropriate for all thirteen men-
tal model estimates, since “the important requirement (for linear regression) is that the expression 
should be linear in the parameters (i.e., coefficients)” (Seber & Wild, 2003, p. 5).  Likewise, the 
goodness-of-fit measures, adjusted R2 and the significance F-test are appropriate for all thirteen 
models.  

Four of the nonlinear models closely followed the insight generating ratio of variable costs to 
fixed cost shown in Eq. 1.  All three of ICM’s discovery algorithms (Excel with PHStat, Knowl-
edgeMiner, and PolyAnalyst) (Table 1, Column 4) were used in this application. 

These results confirm the first research hypothesis; i.e., H1: the ICM-derived mental model repre-
sentation provides the mediating causal process through which the set of key factor values affects 
the actual decisions made by a team, with no a priori knowledge of which factors the team actu-
ally used in its decisions, the algebraic relations between these key factors (e.g., cross terms, 
squared terms, inverse relationships, etc.), or the relative weighting of the factors.  Further, ICM 
provided two goodness-of-fit measures (adjusted R2 and the F-test) indicating that the mental 
model estimate generated by ICM was, in fact, statistically valid. 

Three teams utilized the ICM option of adding a key factor; in fact, one team added several new 
factors.  All added factors were functions of existing key factors; i.e., the teams that added fac-
tor(s) demonstrated knowledge “chunking” (Simon, 1974).  In addition, one team tried to add 
several new decision instances, another ICM option; unfortunately, they were thwarted when they 
exceeded the maximum number of instances (20) allowed by ICM at the time. 

In a breakdown of the self-reported information from the questionnaires (Table 1, Columns 6 & 
7), five of the thirteen teams reported using an algebraic relationship, three others (Team #2, #8, 
and #10) indicated directional relationships, four teams (Team #4, #9, #11, and #13) indicated a 
tacit relationship (i.e., “subjective” or “none”) for the mental model used, and one team (Team 
#1) listed a cost formula as their mental model (something to minimize?).  Note that the self-
reported relationships shown in Table 4, Column 6 reflect those written on the team’s question-
naire response; some teams obviously adjusted their relationship to generate an appropriate num-
ber of warehouses.   

Of the five teams that reported an algebraic relationship, ICM’s model matched the team’s re-
ported relationship (except for omitting s in the reported model for Team #5).  Of the three teams 
that reported directional relationships (Team #2, #8, and #10), ICM generated a model that was 
consistent with the reported relationships for each of the three teams.  Of the five teams that indi-
cated a tacit relationship (Team #1, #4, #9, #11, and #13), ICM’s best model used the same key 
factors for three teams (Team #1, #4 and #9), included one additional factor (T; P-value signifi-
cant at the 5% level) for one of the teams (Team #11), and omitted two factors (s and t) for the 
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fifth team (Team #13;  the P-values for both s and t were statistically insignificant at the 10% lev-
el).   

These results confirm the second research hypothesis; H2a: the ICM-derived mental model repre-
sentation is consistent with the  team’s self-reported algebraic, directional, or tacit relationships, 
and the team’s self-reported key factor; or H2b: any significant differences between the ICM-
derived mental model representation and the team’s self-reported relationships or key factors are 
not consistent with the team’s actual decisions. 

Inconsistencies Highlighted by ICM 
The purpose of ICM is to discover a mathematical representation of the decision maker’s (or de-
cision team’s) mental model.  However, since ICM is based on actual decisions, it also provides 
feedback to each team concerning possible inconsistencies inherent in their decisions and/or in-
consistencies between their decisions and their self-reported mental model characteristics.  Know-
ledge of such inconsistencies, along with ICM’s estimated mental model, may promote improve-
ments in the individual’s mental model (i.e., it enhances decision maker learning).  That is, dis-
crepancies between the externalized mental model and current (inconsistent) decisions stand out 
and can be analyzed because comparison with the mental model is made possible (Weick, 1990).  
Further, discussions of such inconsistencies by individuals within the team represent another form 
of tacit knowledge externalization, as suggested by Nonaka (Nonaka & Takeuchi, 1995).  Note 
that these are inconsistencies within the decisions of a single team and/or the reported information 
of that team; i.e., each team’s set of decision instances is analyzed as an independent entity, with 
the analysis and inconsistencies totally independent of the other individuals/teams, and independ-
ent of any theoretical model (e.g.,  Eq. 1). 

ICM detected three types of inconsistencies in this test.  Inconsistencies-of-application are in-
stances detected by the “all-save-one” algorithm that, when eliminated, cause the adjusted R2 of 
ICM’s estimated model to increase significantly.  Such inconsistencies might reflect clerical er-
rors when entering decisions, lack of concentration or mental fatigue on the part of the decision 
makers, mental model differences between members within the team, etc. (Forman & Selly, 
2001).  Five of 13 teams experienced inconsistencies-of-application (see Table 1, Col. 5); e.g., 
instance #10 for Team #1, when omitted, increased adjusted R2 from 74% to 87%.  These incon-
sistencies are fed back to the team, along with ICM’s best mental model estimate, for reconsid-
eration and (possible) correction.  Inconsistencies-of-reporting are indicated by a key factor being 
reportedly ignored by the team on its questionnaire, but included in ICM’s estimated model; this 
type of inconsistency may demonstrate either the team’s tacit use of a factor or inconsistencies-
of-application.  Two teams demonstrated an inconsistency-of-reporting (Team #2 and #11); e.g., 
Team #2 reportedly ignored the service factor, s, but the P-value for this factor, when added, was 
significant at the 5% level, and including it in the ICM model raised the adjusted R2 from 68% to 
83%.  Finally, inconsistencies-of-weighting are indicated by a key factor being listed in the team-
reported key factors as used in the decisions, but excluded in the ICM estimated model; i.e., the 
team placed insignificant weight on the reported key factor for it to matter.  This may indicate a 
discrepancy between the self-reported model and their actual mental model (Argyris & Schön, 
1996).  Two teams (#5 and #13) demonstrated inconsistency-of-weighting; e.g., Team #13 re-
ported using the service factor, s, and the transportation, t, in their decisions, but ICM’s estimated 
model excluded these two factors and calculated an adjusted R2 with the remaining factors of 
89% and an associated F-test which is significant at the 1% level.  Both factors were statistically 
insignificant (based on P-values insignificant at the 10% level) when included in the model. 
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Analysis of Team Results 
As for specific team analysis, Team #6 was very consistent in their decisions as indicated by the 
adjusted R2 of 98%.  PolyAnalyst generated ICM’s model estimate as n = 4.9 * d * t / (f - 2.2 * s).  
This fits well with the self-reported mental model provided in Team #6’s questionnaire: n = (t * d 
/ f ) + s; i.e., if s = +1 (indicating same day service) you would expect that additional warehouses 
might be needed due to the relatively rapid response requirement, a condition that is met by both 
the team’s formula and the PolyAnalyst model.  Likewise, a Service value of -1 (two business 
days) would indicate that fewer warehouses might be needed to meet this requirement, a condi-
tion that is again met by both models.  Excel/PHStat generated a linear model with a significantly 
lower adjusted R2 (82% versus 98%) for this team’s mental model, whereas KnowledgeMiner’s 
nonlinear model was very complicated (including polynomial terms raised to the fourth power) 
and no improvement in adjusted R2.  

These results highlight several important characteristics of inductive learning networks.  First, 
categorical variables such as the service level can be included in the ICM instances and, if used 
by the decision maker, are logically incorporated by the inductive learning networks into its esti-
mate of the mental model.  In addition, factors that are considered irrelevant by the decision mak-
er are routinely discarded and appropriately omitted by the inductive learning networks; e.g., the 
FindLaws model above suggests that the factory-to-warehouse transportation rate, T, was irrele-
vant to Team #6’s decisions, a finding that was consistent with key factors listed in this team’s 
questionnaire and, also, consistent with reality since all thirteen warehouses are in the same ship-
ping zone.  

Team #4 was less consistent in their decision making, as indicated by an adjusted R2 of 87% with 
the following model generated by ICM (using linear regression plus PHStat’s Best Model algo-
rithm):  n=-.44-.35f+1.6d +.75s+1.2t.  This additive model is reasonable in that higher values of 
demand, d, transportation costs, t, and/or service level, s, lead to more required warehouses, whe-
reas higher warehouse building costs, f, lead to fewer required warehouses (i.e., a negative coeffi-
cient).  The nonlinear model estimated by PolyAnalyst provided a higher adjusted R2 but was 
complicated by multiple imbedded if-statements, whereas the nonlinear model produced by 
Knowledge Miner included high order polynomial terms with no improvement in the adjusted R2.  
Note that ICM’s best model for this team is dimensionally inconsistent; i.e., warehouse building 
costs ($) are inconsistent with transportation costs ($/unit) and demand (units), and all terms are 
dimensionally inconstant with the (unit less) number of warehouses.  This provides the basis for 
feedback to the decision maker suggesting that a multiplicative model (versus an additive model) 
might provide dimensional consistency and improve decision accuracy in the domain. 

Summary and Conclusions 
The purpose of this research was to propose a theoretical justification for, and describe an imple-
mentation of, instance-based cognitive mining (ICM), a process that analyzes multiple decisions 
made by an individual (or small team of individuals) in a specific decision making environment, 
using inductive learning algorithms and regression to generate a mathematical representation of 
the decision maker’s mental model, explicitly relating how the decision maker implicitly selects 
and weighs key factors in making decisions.  We based our theoretical justification of ICM on 
three distinct literatures (knowledge creation, cognitive science, and artificial intelligence).  Fur-
ther, we proposed an architecture that is consistent with the implementation characteristics sug-
gested in our literature review and integrates several inductive artificial intelligence technologies, 
summarizing that architecture in Figure 1.  Finally, we developed a prototype implementation of 
ICM and conducted a preliminary test of the process using MBA students; the results, summa-
rized in Table 1, supported our two research issues.  That is, the ICM-derived mental model rep-
resentation provides the mediating causal process through which the set of key factor values af-



Decision Maker’s Mental Model 

18 

fects the actual decisions made by a team, is independent of researcher bias, and provides two 
goodness-of-fit measures (significance F-test and adjusted R2) of the resulting mental model es-
timate; a lack of structure or fit would be indicated by a low value of adjusted R2, a significance 
F-test greater than 0.05, or an overly complicated ICM model.  In addition, the preliminary test 
results supported our second hypothesis that the ICM-derived mental model representation is ei-
ther consistent with the team’s self-reported algebraic, directional, or tacit relationships, and the 
team’s self-reported key factors; or that any significant differences between the ICM-derived 
mental model representation and the team’s self-reported relationships or key factors are not con-
sistent with the team’s actual decisions. 

ICM provides two unique characteristics that researchers (e.g., Chi, 2007; Gary & Wood, 2007; 
Weick, 1990) and practitioners (e.g., Schoemaker, 1993; Senge, 1990), have stated promote con-
ceptual change, enhance decision maker learning, and improve corresponding decisions.  First, 
ICM is based directly on the decisions that an individual/team makes (as suggested by Argyris & 
Schön, 1996); our theoretical justification of ICM strongly suggests that the analysis of multiple 
decision instances should provide the most direct and rational basis for discovering the decision 
maker’s tacit mental model of the decision domain.  Second, the ICM process includes the capa-
bility to detect (based on actual decisions) three types of decision inconsistencies: inconsisten-
cies-of-applications, inconsistencies-of-reporting, and inconsistencies-of-weighting (see Inconsis-
tencies Highlighted by ICM section above).   

The ICM process is designed to discover and represent relationships between decisions and the 
key factors (as specified, modified and used by the decision maker).  These relationships are rep-
resented in the form of parsimonious polynomials, both linear and nonlinear, both additive and 
ratio-based, providing a wide range of modeling flexibility to capture both tacit and explicit rela-
tionships in the decision domain.  The ICM process has two primary limitations.  One limitation 
is caused by the number of key factors required in the decision domain; i.e., having fifteen or 
twenty key factors would require an unwieldy number of decision instances (too many for an ex-
ecutive to consider in a reasonable amount of time), whereas seven key factors could be repre-
sented in 30-35 instances (carefully crafted to cover the decision space), and nine factors in 60-70 
instances, perhaps an upper bound for a decision maker’s attention span.  “Chunking” of key fac-
tors (Simon, 1974) provides some natural relief as the number of factors increases; e.g., three of 
our decision teams utilized chunking to simplify the five-variable warehouse location problem in 
this test.  However, we need to explore whether a multi-phased application of ICM might provide 
additional support when more than nine factors are required. 

The second limitation of ICM concerns decision inconsistency between instances; e.g., compara-
ble instances in which an increase in factor, x, causes an increase in decision, d, in one instance, 
but a decrease in decision, d, in a different instance, all other things equal.  Decision inconsisten-
cies result in overly complicated (and probably erroneous) mental model estimates.  

The generalizability of this study should be considered in the light of these limitations of the ICM 
process and the (relatively low) experience of our (MBA) decision makers.  According to the 
Theoretical Justification section of this paper, experienced decision makers can be characterized 
as developing and using mental models that incorporate higher levels of complexity using 
“chunks” of key factors and instances, reflecting more tacit knowledge than explicit knowledge, 
leading to faster and more consistent decision making.  Further, the differences between the self-
reported (espoused) mental model and the mental model actually used (theory-in-use) will be 
greater with increased experience as the decision maker justifies his/her decisions in terms of so-
cially, politically, and industrially acceptable standards.   

Mapping these characteristics against the advantages and limitations of ICM we suggest that ICM 
is well designed for experienced decision makers in that:  1) instead of  an analysis based on sur-
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rogate decision measures or interview data (that omits much of the tacit knowledge), ICM ana-
lyzes actual decisions that include all the tacit and explicit knowledge the individual uses in mak-
ing each decision, leading to better ICM mental model estimates (when compared to our inexpe-
rienced subjects); 2) experienced decision makers may take into consideration additional factors, 
but these factors are often combined (tacitly and/or explicitly) with other factors into “chunks” 
(specified by the decision maker within the ICM process) to reduce (or at least, not increase) the 
number of factors and instances presented by ICM; 3) faster decision making leads to more in-
stances that can be presented without exceeding the attention span of the decision maker; 4) in-
creased mental model complexity (i.e., cross terms, squared terms, ratio of terms, and even feed-
back factors if specified by the decision maker) can be discovered by ICM’s inductive learning 
networks; and 5) the differences between the espoused and actual mental models of experienced 
decision makers can be detected and expressed as a by-product of the ICM process. 

The preliminary test of our ICM prototype using a seminal decision domain suggests that the 
ICM process described in this paper is worthy of further development and investigation.  How-
ever, additional empirical research is needed to explore its application in other decision domains 
using larger samples of real-world decision makers, instead of the small sample of teams of stu-
dent decision makers used in our preliminary test.   
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