
Interdisciplinary Journal of Information, Knowledge, and Management Volume 2, 2007

Editor: Kathy Lynch

A Generic Agent Framework to Support the
Various Software Project Management Processes

Rita C Nienaber and Andries Barnard
School of Computing, University of South Africa, Pretoria,

South Africa

nienarc@unisa.ac.za barnaa@unisa.ac.za

Abstract
Despite various research efforts originating from both academia and industry, software projects
have a high rate of failure, more specific, software projects often do not comply with the tradi-
tional standard measurements of success, namely time, cost and requirements specification.
Thus, there is a need for new methods and measures to support the software project management
process.

Globalisation and advances in computing technologies has changed the software project man-
agement environment. Currently software projects are developed and deployed in distributed,
pervasive and collaborative environments and traditional project management methods cannot,
and do not, address the added complexities inherent to this environment.

In this paper the utilisation of stationary and mobile software agents is investigated as a potential
tool to assist with the improvement of software project management processes. In particular we
propose and discuss a software agent framework to support software project management. Al-
though still in its initial phases, this research shows promise of significant results in enabling
software developers to meet market expectations, and produce projects on time, within budget
and to users’ satisfaction.

Keywords: Software Project Management, Software Agent Technology, Project Scope Man-
agement, Project Time management, Project Cost Management, Project Quality Management,
Project Risk Management, Project Communication Management, Project Human Resource
Management, Project Procurement Management,

Introduction
Software Project Management (SPM) has become a critical task in many organisations. Manag-
ing software projects is a complex task, further complicated by a continued increase in the size
and complexity of the software-intensive system. In the 1980’s SPM methodologies primarily

focused on providing schedule and re-
source data to management (Schwalbe,
2006.) However, present-day SPM ac-
tivities involve much more. With the
advent of the Internet, improvement of
computer hardware, software, and net-
works, global interdisciplinary work
teams have changed the working envi-
ronment addressed by SPM. Global
networking capabilities have become
more pervasive with the result that cost-

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

Generic Agent Framework

150

effective computing resources will continue to play a major role in improving organisational op-
erations.

SPM involves the management of all issues involved in the development of a software project,
namely scope and objective identification, evaluation, planning, project development approaches,
software effort and cost estimation, activity planning, monitoring and control, risk management,
resource allocation and control, as well as managing contracts, teams of people and quality.

Since publication of the 1995 report of The Standish Group, this same organisation studied
13,522 projects in a follow-up survey, aptly dubbed EXTREME CHAOS (The Standish Group,
2000). This study determined that 23 percent of the surveyed projects failed, 49 percent did not
meet the requirements and only 28 percent succeeded. In March 2003 the group reports that suc-
cess rates increased to a third of all projects, but time overruns increased to the 82nd percentile,
whilst only 52 percent of required and specified functions and features were included in the final
product (The Standish Group, 2003).

Many software projects still failed to comply with the triple constraints of scope, time and cost
(Oghma: Open Source, 2003). These triple constraints refer to the fact that the failure of software
projects can mostly be attributed to projects not delivered on time and that it does not meet the
expectations of the client (scope), and as a result have cost overrun implications. As previously
mentioned, the SPM environment is continuously changing due to globalisation and advances in
computing technology. This implies that the traditional single project, commonly executed at a
single location, has evolved into distributed, collaborative projects. The focus in SPM processes
has clearly shifted from the position that it held two decades ago. Consequently, the size, com-
plexity and strategic importance of information systems currently being developed require strin-
gent measures to ensure that software projects do not fail. As organisations continue to invest
time and resources in strategically important software projects, managing the risk associated with
the project becomes a critical area of concern.

Software agent technology offers a promising solution in order to address SPM problems in a dis-
tributed environment. According to this technology, software agents are used to support the de-
velopment of SPM systems in which data, control, expertise, or resources are distributed. Soft-
ware agent technology provides a natural metaphor for support in a distributed team environment,
where software agents can support the project manager and team members to monitor and coordi-
nate tasks, apply quality control measures, validation and verification, as well as change control.
Agent technology has distinct advantages over client/server technology as distributed system in-
stantiation. SPM skills, especially in the distributed computing environment, are greatly in de-
mand. Moreover, there is a need for technologies and systems to support management of related
aspects of software projects in such environments. Our research is therefore aimed at software
practitioners and software developers, but will also be beneficial to researchers working in the
field of SPM.

In this paper the use of software agents is investigated as a potential tool to improve the manage-
ment of related SPM processes. We specifically concern ourselves with the question of how
software agents can be used to improve all core and facilitating management functions in distrib-
uted environments. As a result, we propose two software agent frameworks to support SPM in
such environments. Although our research is not yet complete, initial indications are that it will
enable software developers to meet market expectations and to manage risk and associated core
and facilitating factors accordingly. This, in turn, will bring about savings in cost, time and ef-
fort.

In the next section of this paper, brief information regarding agent technology is provided. The
third section contains a background study on SPM and a discussion on agents utilised in SPM. In
the fourth section the phases of the core and facilitating functions during SPM are discussed, as

 Nienaber & Barnard

 151

well as a proposal of a generic multi-agent framework supporting SPM. This framework supports
the entire spectrum of SPM processes and as instantiation thereof, has been conformed to include
our previously identified frameworks for risk, quality and communication management (Nienaber
& Barnard, 2005; Nienaber & Cloete, 2003; Nienaber, Cloete, & Barnard, 2004). Finally, a con-
clusion is presented.

Software Agent Technology
This section presents a discussion on software agent technology. Differentiating properties of
software agents are explained.

A software agent is a software program that is capable of autonomous (or at least semi-
autonomous) actions in pursuit of a specific goal. The autonomy characteristic of a software
agent distinguishes it from general software programs. Autonomy in agents implies that the
software agent has the ability to perform its tasks without direct control, or at least with minimum
supervision, in which case it will be a semi-autonomous software agent. Software agents can be
grouped, according to specific characteristics, into different software agent classes. Literature
does not agree on the different types or classes of software agents. As software agents are com-
monly classified according to a set of characteristics, different classes of software agents often
overlap, implying that a software agent might belong to more than one class at a time (d’Inverno
& Luck, 2001). For the purpose of this research, we distinguish between two simple classes of
software agents, namely stationary agents and mobile agents. Agents in both these classes may,
or may not have, any or a combination of the following characteristics: a user interface, intelli-
gence, adaptivity, flexibility and collaborative properties (Wooldridge, 2001).

Whether or not an agent has a user interface, depends on whether it collaborates with humans,
other agents or hosts. User interfaces are commonly only found where software agents are re-
quired to interact with humans. According to Wooldridge (2001) intelligence implies the inclu-
sion of at least three distinct properties, namely reactivity, proactiveness and social ability. Reac-
tivity refers to the agent’s ability to perceive its environment and respond in a timely manner to
changes that occur in order to achieve its design goals. Proactiveness is the agent’s ability to take
initiative in its environment in order to achieve its design goals. Social ability alludes to the col-
laborative nature of the agent. There are different definitions to define the collaborative nature of
software agents. For the purpose of this paper we use Croft’s (1997) definition in which the col-
laborative nature of a software agent refers to the agent’s ability to share information or barter for
specialised services to cause a deliberate synergism amongst agents. It is expected of most agents
to have a strong collaborative nature without necessarily implying other intelligence properties.
Adaptivity is a characteristic that can also be regarded as an intelligence property, although it is
not counted as a prerequisite to identify an agent as intelligent. Adaptivity refers to an agent’s
ability to customize itself on the basis of previous experiences. An agent is considered flexible
when it can dynamically choose which actions to invoke, and in what sequence, in response to the
state of its external environment (Pai, Wang & Jiang, 2000).

A stationary agent can be seen as a piece of autonomous (or semi-autonomous) software that
permanently resides on a particular host. Such an agent performs tasks on its host machine such
as accepting mobile agents, allocating resources, performing specific computing tasks, enforcing
security policies and so forth.

A mobile agent is a software agent that has the ability to transport itself from one host to another
in a network. The ability to travel allows a mobile agent to move itself to a host that contains an
object with which the agent wants to interact, and then to take advantage of the computing re-
sources of the object’s host in order to interact with that object. Full autonomy, migratability and
collaborativeness are the most important characteristics that should be imbedded in each mobile

Generic Agent Framework

152

agent. When a mobile agent possesses these three intelligence requirements, it is often referred to
as a robot (Krupansky, 2003).

Software Project Management (SPM)

Software Project Management Framework
SPM is defined as the process of planning, organising, staffing, monitoring, controlling, and lead-
ing a software project (IEEE Standards Board, 1987). A more detailed exposition shows that
SPM involves the planning, monitoring and controlling of people and processes that are involved
in the creation of executable programs, related data and documentation (ELEC 4704, 2003). Fig-
ure 1 illustrates a framework of the key elements in SPM identified by The Project Management
Body of Knowledge (PMBOK), (Project Management Institute, 2004). We distinguish between
three key elements: project stakeholders, project management knowledge areas, and project man-
agement tools and techniques.

Figure 1: Software Project Management Framework (adapted from Schwalbe, 2006)

Project stakeholders are those individuals involved in all different project activities and include
the project sponsor, project team, support staff, customers, users, suppliers and even opponents of
the project. Although these stakeholders may have different views and expectations, good rela-
tionships as well as communication and coordination between all of these stakeholders are essen-
tial to ensure that the needs and expectations of stakeholders are understood and met.

Software project management knowledge areas include the key competencies concerned during
the software project management process. These areas are categorised as core and facilitating
functions. The core functions, namely scope, time, cost and quality management lead to specific
project objectives and are supported by the facilitating functions. The facilitating functions repre-
sent the means through which different objectives are to be met and include human resource
management, communication, risk, and procurement management. Stretched across all these
knowledge areas are the project management tools and techniques (on the right-hand side of the
framework diagram). These are used to assist team members and project managers in carrying
out the core and facilitating functions.

K
N

O
W

LE
D

G
E

A
R

EA
S

CORE FUNCTIONS

Scope Manage-
ment

Time Manage-
ment

Cost Management Quality
Management

FACILITATING FUNCTIONS

Human Resource
Management

Communication
Management

Risk Management Procurement
Management

ST
A

K
EH

O
LD

ER
S

TO
O

LS
&

TE
C

H
N

IQ
U

ES

PROJECT MANAGEMENT INTEGRATION

 Nienaber & Barnard

 153

Software Agents in SPM
Software agent technology is at present explored as a promising way to support and implement
complex distributed systems and a useful supplement to client/server systems. In this section, the
authors briefly consider how agent technology is currently deployed in SPM by considering some
application examples. As described earlier, the SPM environment has changed in the past decade
into a dynamic and complex environment where flexible and adaptive behaviour and management
techniques are required. Agent-based solutions are applicable to this environment since they are
appropriate in highly dynamic, complex, centralised as well as distributed situations (Dowling,
2000). In addition to the advantages of distributed and concurrent problem-solving, agent tech-
nology has the advantage of sophisticated patterns of interaction, namely cooperation, coordina-
tion and negotiation (Hall, Guo & Davis, 2003).

The first application that we mention utilises agents for project planning and process management
in a distributed environment. O’Connor & Jenkins (1999) propose an intelligent assistant system
to support the project team during planning, scheduling and risk management. Joslin & Poole
(2005) adapts a simulation-based planning algorithm to the problem of planning for SPM.

In another example software agents are used to control and monitor activity execution at various
sites in an open source platform supporting distributed software engineering processes. This en-
vironment is being developed as part of the GENESIS project (Gaeta & Ritrovato, 2002). Soft-
ware agents are used in this project to support the control of software processes as well as the
communication among distributed software engineering teams. Agents are mainly utilised for the
synchronisation of process instances executed on different sites, the dynamic reconfiguration of
software processes, process data collection, monitoring of the processes, as well as artefact re-
trieval. Other relevant examples of agent utilisation in SPM can be found, among others, in
Maurer (1996) and Sauer & Appelrath (2003). Sauer & Applerath (2003) present an application
using agents to primarily focus on Time Management and certain aspects of the Communication
Management function. Maurer’s solution (1996) is applicable to Scope Management, Time Man-
agement and, to a certain extent, the Communication Management function. Agent technology
has been more commonly applied to areas such as network and system management (Kendall,
Krishna, Suresh & Pathak, 2000), decision and logic support (Burstein, McDermott, & Smith,
2000), interest matching (Object Management Group, 2000), data collection in distributed and
heterogenous environments, searching and filtering, negotiating, and monitoring (Venners, 1997).

Multi-Agent Model for Software Project Management

Software Project Management Phases
In order to identify and compile a general multi-agent model to facilitate (in the following two
sections) all of the SPM processes involved, the steps comprising each process of each of the key
areas will be elaborated on below:

Software scope management:
Schwalbe (2006) identifies the following specific phases of software project scope management
namely initiation, scope planning, scope definition, scope verification and scope change control.
Initiation of the project involves the commitment of an organisation to a project. Scope planning
identifies and refines project scope and creates a formal scope statement document, scope defini-
tion involves the division of major project deliverables into smaller and more manageable com-
ponents and scope verification includes formal acceptance of the scope of the project by the vari-
ous key stakeholders.

Generic Agent Framework

154

Software time management:
Time management involves the processes required to measure timely completion of a project and
as such involves not only the creation of an activity plan, but also the estimation of each task and
activity, resulting in the overall duration of the project. Activity planning constitutes the baseline
for project and resource scheduling, supporting a number of objectives (Hughes & Cotterel,
2006), namely feasibility assessment, resource allocation, detailed costing, motivation and coor-
dination of the project. The main processes involved in time management (Schwalbe, 2006) are
briefly reflected on below:

Activity definition involves the identification of each task or activity that must be executed in or-
der to produce the project deliverables. Activity sequencing indicates when each of the identified
activities should occur. Activity duration estimation concerns estimating the work periods to be
executed. Schedule development involves utilising the previous two activities, as well as resource
requirements, to create the project schedule. Schedule control refers to the controlling and man-
aging of changes to the initial schedule.

Software cost management:
Cost management can be seen as all processes required to ensure that a project team completes a
project within an approved budget (Schwalbe, 2006). Cost estimation refers to the process of de-
veloping an approximation or estimate of the costs of all actions, resources and procedures, and
cost budgeting involve using the project cost estimate and allocating this to individual work
items. Cost control and monitoring includes monitoring cost performance, reviewing changes
and notifying stakeholders and team members of changes related to cost.

Software quality management:
The Project Management Body of Knowledge (PMBOK) defines project quality management as
processes required to ensure that the project will satisfy the needs for which it was undertaken. It
includes all activities of the overall management function that determine the quality policy, objec-
tives, and responsibility and implements these by means of quality planning, quality assurance,
quality control and quality improvement, within the quality system. Major quality management
processes identified by Schwalbe (2006) are quality planning during which quality standards are
identified and applied. Quality assurance involves evaluating overall performance regularly,
quality audits or reviews can support this function. Quality control concerns monitoring activities
and end results to ensure compliance to standards.

Software human resource management:
Human resource management involves all processes required to effectively utilise all resources
involved in a project. A resource may be seen as any item or person required for the execution of
a project. Human resource management concerns all project stakeholders involved in developing
the project. The main focus of this process is to allocate resources to activities, and to create a
work schedule from the activity plan. Hughes & Cotterell (2006) identifies seven categories of
resources to be managed for a project, namely: labour, equipment, materials, space, services, time
and money. Schwalbe (2006) identifies three phases, namely organisational planning, staff ac-
quisition and team development.

Software communication management:
Communications management in a software project is an enabling and supporting action that en-
sures timely and appropriate generation, collection, dissemination, storage and disposition of pro-
ject information (Schwalbe, 2006). Effective communication and sharing of information and
knowledge among project contributors are required. Schwalbe identifies five distinct functions

 Nienaber & Barnard

 155

associated with communications management, namely: The communications planning function
that determines the who, when and how of the project, whilst the information distribution function
entails disseminating information to keep all stakeholders informed. Performance reporting al-
ludes to the generation of reports such as status, progress and forecasting reports, while the ad-
ministrative closure function involves project archiving and formal acceptance of reports. Finally
the teamwork support function refers to the functions pertaining to collaborative project tasks,
and hence includes the scheduling of meetings for these collaborative tasks. It therefore facili-
tates a collaborative working environment as well as document distribution.

Software risk management:
Various models or frameworks exist to ameliorate the risk associated with software project de-
velopment. According to Marchekwa (2003), this basically entails two aspects, namely risk
analysis and risk management. Risk analysis includes risk identification, qualitative and quantita-
tive risk analysis, evaluation and assessment. Risk management on the other hand entails risk
planning, monitoring and control. Similarly, Hughes and Cotterel (2006) identify two major ar-
eas, namely risk analysis and risk management, based on Boehm’s model (1989), including the
following functions namely risk identification, risk evaluation, risk planning, risk control, and
risk monitoring

Software procurement management:
During the process of software project development, products, goods or items that are not readily
available within the organisation (perhaps in the form of software, hardware or people) must be
acquired (Marchewka, 2003). Procurement refers to the process of acquiring goods or services
from an outside source. Procurement management thus entails a set of procedures to facilitate
acquisition of such products, expediting external work and to ensure the satisfactory standard of
work throughout a given organisation. These may involve rules for acquisition, purchase order
documentation required by a specific organisation and creating and maintaining lists of trustwor-
thy, qualified vendors (Hughes & Cotterel, 2006). Project procurement management consists of
six main processes, namely procurement planning, solicitation planning, solicitation, source se-
lection, contract administration, and contract close-out (Schwalbe, 2006).

However, these phases should not be considered as separate development phases but should be
entwined in all phases and all processes during the SPM undertaking. Table 1 depicts the phases
utilised during execution of the core and facilitating functions:

Table 1: Software Project Management core and facilitating functions
Scope

Manage-
ment

Time Man-
agement

Cost Manage-
ment

Quality
Man-

agement

HR Man-
agement

Communica-
tion Manage-

ment

Risk Man-
agement

Procurement
Management

Initiation Activity
definition

Cost & resource
planning

 Identification Identification Identification

Definition Activity
sequencing
Activity
duration
estimation

Cost estimation Planning Planning
Team devel-
opment

Planning
Team support

Estimation
Evaluation
Assessment

Solicitation
Planning

Planning Time sched-
ule devel-
opment

Budgeting Assur-
ance

Monitor &
control

Information
Distribution

Planning
Staffing

Contract
administration

Control Time sched-
ule control

Control Control Performance
Reporting

Monitor
Control

Control

Verifica-
tion

 Valida-
tion

 Admin closure

Generic Agent Framework

156

As abstraction of this table the correlating phases of the core and facilitating functions will be
used to compile a generic model in a subsequent section.

Software Agents to Support SPM
Software agent technology provides a useful paradigm for the use of distributed computational
resources. Mobile agents (Butte, 2002) enable a shift in the communication paradigm of distrib-
uted systems from data shipping to function shipping. Using mobile agent technology, in com-
parison to the classic well-known Remote Procedure Call (RPC), or its object-oriented equivalent
Remote Method Invocation (RMI), due to the autonomous code it entails may attain a higher
level of abstraction. This autonomy reduces network load and communication overhead in dis-
tributed applications. Distributed applications based on RPC techniques are suitable for stable
and static system structures, which is not always the case in a distributed environment.

To describe how software agents are used to address the different functions, we use a set of agent
teams to address the individual functions and then define specialised software agents operating
within these teams, or on their own where applicable. In defining these specialised software
agents, we find that it is less intricate to design the behaviour of each agent. Furthermore, the
specialised agents also make it possible to describe the various interactions between different
agents explicitly, which in turn reduces the general complexity of the agent system. The various
programming patterns (Aridor & Lange, 1998; Kendall et al., 2000) available, accomplish spe-
cific agent-associated tasks, such as creation, migration, suspension, and collaboration.

The design of the overall system, based on components (specialised agents) simplifies the design
and programming of agents. The following specialised working agents are used in our discussion
of the generic multi-agent framework that we present in the next subsection.

These working agents include:

Personal assistant agent (PA agent): an agent that supports an individual stakeholder to accom-
plish his or her tasks by providing maximum assistance. This agent also has a collaborative na-
ture, and relies on other agents to provide it with the information that it requires to sustain its
owner. The PA agent is not computer-bound, but human-bound, as its human stakeholder may
work on different computers in a distributed environment.

Messaging agent: an agent responsible for transporting messages between different agent teams.
A messaging agent has strong collaborative characteristics and is by nature a mobile agent since
the different agent teams may function in a distributed environment.

Task agent: an agent that supports a specific project task. This agent collaborates with other ob-
jective and facilitator functions to support a specific task. Such an agent is commonly invoked by
a PA agent to allow a stakeholder to work on a specific task, and is continuously monitored by a
monitoring agent.

Monitoring agent: an agent responsible for monitoring tasks. A monitoring agent is mobile, with
intelligence, flexibility and strong collaborative properties.

Team manager agent: an agent that is responsible for managing a team of agents, ensuring coor-
dination between the sub-tasks of the different members of a team to accomplish the objective of
the agent team.

For the model we present in this paper, we will adopt a combination of these agents.

Software Agent Framework to Support SPM
We briefly reconsider the distinct knowledge areas and practices entailed in software project
management (illustrated in Figure 1 and summarised in Table 1), to emphasise the focus of our

 Nienaber & Barnard

 157

work for this paper. The SPM areas consist of four core functions and four facilitator functions.
We believe that each of these key processes/functions could successfully be addressed by follow-
ing a black box approach that is based on agent technology. Each black box consists of collabo-
rative software agents ensuring cooperation, coordination and synergy between the different black
boxes. Within such a black box a component-based development approach is followed. Accord-
ing to this approach, we use multiple (simple) agents, each with a particular objective, rather than
fewer (complex) agents of which each has a long list of tasks to accomplish. An abstraction of
the generic functions of a key SPM process was compiled into a generic model (Figure 2).

Figure 2: Generic model for SPM processes

This abstraction will be used to compile two generic multi-agent frameworks supporting all
phases of SPM. In particular we discuss our approach to the entire spectrum of the SPM key
processes, and describe the agent framework to accomplish the black-box for these processes.

As mentioned previously, an abstraction of the functions of the key SPM processes was compiled
into a generic model (Figure 2). This abstraction can then be used to compile a conceptual model
or framework for each of the key SPM processes. To illustrate this process risk management is
used as an example. Software risk management consist of the following phases: risk identifica-
tion, risk analysis that includes risk assessment and evaluation, risk planning, monitoring and
control. An agent framework depicting this key area is illustrated in Figure 3.

Figure 3: Software risk management

Repository

User Interface

Initiation

S

T

A

K

E

H

O

L

E

R

S

Analysis /
evaluation

Control &
monitor

Validation

User Interface

Planning

S
T
A
K
E
H
O
L
D
E
R
S

User interface

Risk Identifica-
tion

User Interface

Risk planning

Risk assessment
& evaluation

Risk monitor &
control

 Repository

Generic Agent Framework

158

The generic model as depicted in Figure 2 was instantiated to one key area, namely risk manage-
ment, resulting in Figure 3. In a similar way the basic generic model will be detailed, elaborated
and expanded on to compile an overall framework and two conceptual models will be created
depicting the core functions and the facilitating functions, Figure 4 and Figure 5 respectively. A
conceptual model for the SPM core functions: time management, cost management, quality man-
agement & scope management is shown in Figure 4.

Figure 4: Conceptual model for the core functions: time management, cost management,

quality management & scope management

STAKEHOLDERS

User Interface

Activity define &
sequencing

User Interface

Time schedule
development

REPOSITORY

Activity duration
estimation

Time schedule
control

Cost estimation

User Interface

Cost & resource
planning

User Interface

Cost control

Cost budgeting

STAKEHOLDERS

Quality Control

User Interface

Quality assur-
ance

Change
control

Validation

Scope initiation

User Interface

Scope Control

User Interface

Quality Planning

User Interface

Scope plan-
ning

Scope defini-
tion

Scope verifi-
cation

 Nienaber & Barnard

 159

The SPM facilitating functions: communication management, risk management, procurement
management and human resource management are depicted in Figure 5.

Figure 5: Conceptual model for facilitating functions: communication management, risk

management, procurement management and human resource management

We believe that both these models may be implemented as agent black boxes in support of SPM
functions.

As prototype of this model one key core function, namely risk management, is currently being
implemented in Java and will subsequently be tested. To implement a software agent system an

User Interface

Risk planning

Risk monitor
Risk control

Risk evaluation
Risk assessment

REPOSITORY

Admin
closure

Performance
reporting

Information
distribution

STAKEHOLDERS

User Interface

Risk identifi-
cation

User Interface

Team support

User Interface

Communication
identif ication
planning

H R Team
development

User Interface

H R Organiza-
tional planning

User Interface

Procurement
identification
plan

User Interface

Contract ad-
ministration

User Interface

H R Monitor
H R Control

Planning Contract clo-
sure

Procurement
solicitation

STAKEHOLDERS

Generic Agent Framework

160

adaptive and flexible framework is needed that supports multi-agent features that permits the set
up of a distributed application, as well as an appropriate level of reasoning capability.

As Java contains most of the required technologies to implement software and mobile agents,
such as multithreading, remote method invocation, portable architecture, security features, broad-
cast support and database connectivity (Wooldridge, 2001), it is viable to implement the system
in Java. JADE (Java Agent Development Framework) is a software framework to develop agent-
based applications in compliance with the FIPA specifications for interoperable intelligent multi-
agent systems. It supports debugging and deployment, the agent platform can be distributed
across machines, and the graphical user interface (GUI) can be controlled and changed via a re-
mote GUI. The goal is to simplify the development while ensuring compliance to standards
through a comprehensive set of system services and agents. JADE can be considered as agent
middleware that implements an agent platform and sustains a development framework. JADE
facilitates mobile agent application development, providing key features for distributed network
programming. The development and implementation detail, as well as test results, will be de-
tailed in further research.

As part of our research we regard the ISO standards as important guidelines. ISO27001 utilises a
model, namely the PDCA cycle to develop and improve an organisation’s management system.
This cycle was originally designed by Walther Shewart, but revised by the Quality Management
authority W Edwards Deming and is currently known as the Plan-Do-Check-Act standard (ISO
17799 Central, 2006). This cycle is used to coordinate continuous improvement efforts, supports
daily routine management, supports general problem-solving processes, and also supports SPM,
vendor management, human resource management and product development.

Our proposed generic model, as illustrated in Figure 2, is compared to the ISO standard PDCA
Cycle in Table 2. The first three phases conforms to that of the PDCA cycle’s last three phases.
This work will be elaborated on in further research.

Tabel 2: Comparison of PDCA cycle and generic model for software agent frame

PDCA Cycle Generic model for software agents

 Initiation / evaluation

Plan Planning

Do Control / Monitor

Check Validation / verification

Act

Conclusion
In this paper we investigated an approach of using software agent technology to address the chal-
lenges posed in the Software Project Management (SPM) arena. We focussed on compiling a
generic model supporting all key areas of SPM, and designed a generic agent framework to ad-
dress the common tasks of the key elements. This abstract model was instantiated and detailed to
form two comprehensive overall frameworks, supporting all core and facilitating functions. The
framework forms a basis for all core and facilitating functions to achieve the objectives of SPM.
Our framework follows an approach of agent teams being composed of specialised software
agents, each tasked with a manageable / atomic task. This implies that the complexity of creating
and maintaining tasks can be greatly reduced. The prototype of this system is currently being
implemented for one core function in Java’s development platform JADE. We believe that our
solution in the form of a framework can potentially be significant based on our experience in

 Nienaber & Barnard

 161

other fields that advocate component-based development. Our framework complies with the ISO
27001 standard PDCA cycle, and as such it supports a recognised standard utilised during SPM.

References
Aridor, Y. & Lange, D.B. (1998). Agent design patterns: Elements of agent application design. Proceed-

ings of the 2nd International Conference on Autonomous Agents. Minneapolis/St. Paul, USA. 108 -
115.

Boehm, B. W. (1989, May). A spiral model of software development and enhancement. Computer, 61 -72.

Burstein, M., McDermott, D. & Smith D.R. (2000). Derivation of glue-code for agent interoperation. Pro-
ceedings of the 4th International Conference on Autonomous agents. ACM Press.

Butte, T. (2002). Technologies for the development of agent-based distributed applications. Crossroads,
8(3), 8 – 15.

Croft, D.W. (1997). Intelligent software agents: Definitions and applications. Retrieved May 3, 2003 from
http://www.alumni.caltech.edu/~croft/research/agent/definition/

d’Inverno, M. & Luck, M. (2001). Understanding agent systems. Berlin: Springer-Verlag.

Dowling, C. (2000), Intelligent agents: some ethical issues and dilemmas. AICE 2000. Retrieved August 1,
2003 from http://www.businessit.bf.rmit.edu.au/aice/events/AICE2000/papers/dow.pdf

ELEC 4704 - Software project management. (2003). Department of Electrical and Information Engineer-
ing. University of Sydney. Retrieved May 12, 2004 from http://www.ee.usyd.edu.au/elec4704/lec-
01.html

Gaeta, M. & Ritrovato, P. (2002). Generalised environment for process management in cooperative soft-
ware engineering. Proceedings of the 26th Annual International Computer Software and Applications
Conference. Oxford, England.

Hall, G., Guo, Y. & Davis, R. A. (2003). Developing a value-based decision-making model for inquiring
organizations. Proceedings of the 36th Hawaii International Conference on System Sciences. Big Is-
land, Hawaii.

Hughes, B. & Cotterel, M. (2006). Software project management (4th ed.). McGraw-Hill.

IEEE Standards Board. (1987). IEEE Standard for software project management plans. IEEE Std 1058.1-
1987. 16pp. PDF: ISBN 0-7381-0409-4, SS12138.

ISO 17799 Central. (2006). The A-Z guide for BS7799 and ISO17799 information. Retrieved November
11, 2006, from http://www.17799central.com/pdca.htm

Joslin, D. & Poole, W. (2005). Agent-based simulations for software project planning. Proceedings of the
2005 Winter Simulation Conference. IEEE 2005.

Kendall, E.A., Krishna, P.V., Suresh, C.B. & Pathak, C.V. (2000). An application framework for intelligent
and mobile agents. ACM Computing Surveys, 32, 1.

Krupansky, J.W. (2003). What is a software agent? Retrieved October 12, 2005 from
http://agtivity.com/agdef.htm

Marchewka, J.T. (2003). Information technology project management. Wiley.

Maurer, F. (1996). Project coordination in design processes. Proceedings of the 5th International Work-
shops for enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’96) IEEE.

Nienaber, R.C. & Barnard, A. (2005). Software quality management supported by software agent technol-
ogy. Issues in Informing Science and Information Technology, 2, 659-670. Available at
http://2005papers.iisit.org/I53f40Nien.pdf

Nienaber, R.C. & Cloete, E. (2003). A software agent framework for the support of software project man-
agement. Proceedings of SAICSIT 2003, pp 16-23

Generic Agent Framework

162

Nienaber, R.C., Cloete, E., & Barnard, A. (2004). Software project risk management supported by agent
technology. The Business Review Journal, 452-459.

Object Management Group. (2000). Mobile agent facility specification. Retrieved October 8, 2002, from
http://www.omg.org

O’Connor, R. & Jenkins, J. (1999). Using agents for distributed software project management. Proceedings
of 8th International Workshop on Enabling Technologies, pp 54-60. IEEE Computer Society Press.

Oghma: Open Source. (2003). Types of software agents. Retrieved May 4, 2003 from
http://www.oghma.org

Pai, W.C., Wang, C.C., & Jiang, D.R. (2000). A software development model based on quality measure-
ment. Proceedings of the ICSA 13th International Conference. Computer Applications in Industry and
Engineering, 40-43.

Project Management Institute [PMI]. (2004). A guide to the project management body of knowledge
(PMBOK Guide).

Sauer, J. & Applerath, H. (2003). Scheduling the supply chain by teams of agents. Proceedings of the 36th
Hawaii International Conference on System Sciences. Big Island, Hawaii.

Schwalbe, K. (2006). Information technology project management (4th ed.). Thompson Learning.

The Standish Group. (1995).CHAOS. Retrieved May 4, 2005 from http://www.standishgroup.com/

The Standish Group. (2000). EXTREME CHAOS. Retrieved May 4, 2005 from
http://www.standishgroup.com/

The Standish Group. (2003). Latest Standish Group CHAOS report shows product success rates have im-
proved by 50%. Retrieved March 30, 2005 from http://www.standishgroup.com/

Venners, B. (2000). Inside the Java virtual machine (2nd ed.). McGraw-Hill.

Wooldridge, M. (2001). An introduction to multi-agent systems. Chichester, UK: John Wiley & Sons.

Biographies
Ms Rita C Nienaber is a senior lecturer in the School of Computing at
the University of South Africa. She obtained her Master of Science
(Information Technology), from the University of South Africa in 1996
and is currently enrolled for a doctorate degree at Unisa. Whilst lectur-
ing modules including database systems development, system analysis
and design and software project management, her areas of publishing
focus on software project management and software agent technology.

Andries Barnard, associate professor in the School of Computing at
the University of South Africa, holds a PhD (Computer Science). He
teaches undergraduate courses in automata theory and formal lan-
guages and project management, as well as postgraduate courses in
project management and research methodology. His research interests
include software project management and software agent technology,
semantic web technologies, computer ethics as well as graph grammar
languages.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [305 305]
 /PageSize [432.000 648.000]
>> setpagedevice

