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ABSTRACT  
Aim/Purpose This research utilized a learn-to-rank algorithm to provide medical recommen-

dations to prescribers. The algorithm has been utilized in other domains, such 
as information retrieval and recommender systems. 

Background Ranking the possible medical treatments according to diagnoses of the medical 
cases is very beneficial for doctors, especially during the coding process.  

Methodology We developed two deep learning pointwise learn-to-rank models within one 
prediction pipeline: one for predicting the top possible active ingredients from 
disease features, the other for ranking actual medicines codes from diseases and 
the ingredients features. 

Contribution A new learn-to-rank deep learning model has been developed to rank medical 
procedures based on datasets collected from insurance companies. 

Findings We ran 18 cross-validation trials on a confidential dataset from an insurance 
company. We obtained an average normalized discounted cumulative gain 
(NDCG@8) of 74% with a 5% standard deviation as a result of all 18 experi-
ments. Our approach outperformed a known approach used in the information 
retrieval domain in which data is represented in LibSVM format. Then, we ran 
the same trials using three learn-to-rank models – pointwise, pairwise, and list-
wise – which yielded average NDCG@8 of 71%, 72%, and 72%, respectively.   

Recommendations  
for Practitioners 

The proposed model provides an insightful approach to helping to manage the 
patient’s treatment process.   

https://doi.org/10.28945/5371
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
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Recommendations  
for Researchers  

This research lays the groundwork for exploring various applications of data 
science techniques and machine learning algorithms in the medical field. Future 
studies should focus on the significant potential of learn-to-rank algorithms 
across different medical domains, including their use in cost-effectiveness mod-
els. Emphasizing these algorithms could enhance decision-making processes 
and optimize resource allocation in healthcare settings. 

Impact on Society This will help insurance companies and end users reduce the cost associated 
with patient treatment. It also helps doctors to choose the best procedure and 
medicines for their patients.  

Future Research Future research is required to investigate the impact of medicine data at a gran-
ular level. 

Keywords learn to rank, medicine ranking, decision making  

 

INTRODUCTION 
The medical field has long been a cornerstone of research due to its vital role in promoting human 
health and well-being (Subrahmanya et al., 2022). Medical professionals and insurance claim coders 
are responsible for inputting detailed medical claims into healthcare management systems (Y. Yang et 
al., 2022). This task requires precise coding of diagnoses for each patient case to ensure that all stake-
holders involved can accurately interpret and utilize the information. Additionally, it is crucial to doc-
ument subsequent treatments, including medications, procedures, radiological tests, and physiother-
apy sessions. A major challenge within the healthcare sector is the potential for physicians to select 
inappropriate or suboptimal treatments, which can damage their professional reputation, jeopardize 
patient health, and negatively impact insurance companies’ financial stability. Enhancing the accuracy 
of physicians’ treatment decisions by narrowing down and prioritizing the most relevant treatment 
options is essential to mitigate this issue. This need has driven the development of decision-support 
mechanisms. It is important to note that contracts do not influence the actual treatment decisions, 
which the physician ultimately determines. However, contractual agreements may sway a physician’s 
choice of medication brand, especially when alternative options have similar therapeutic properties. 
Factors such as medication cost and quantity can significantly influence these choices, aiding physi-
cians in quickly selecting the necessary medications. Many patients visiting doctors have private in-
surance, and physicians often have contracts with insurance companies that impose certain re-
strictions on their choice of medication brands. While not affecting the treatment itself, these con-
tracts may influence the selection of the most suitable medication brand that meets the patient’s 
medical needs and the contractual terms with the insurance company. Therefore, it is imperative to 
tailor treatment options to each patient’s case, as multiple treatments may be appropriate for the 
same condition, depending on the physician’s clinical judgment (Reig et al., 2022). 

Data science approaches are rapidly advancing and demonstrating significant impact across various 
domains, including healthcare. We believe these methods hold great potential and promise within the 
healthcare sector. This paper focuses on leveraging a specialized branch of data science, specifically 
learning to rank (LTR), to prioritize the most effective medications for particular diseases. Numerous 
studies have explored the application of machine learning and deep learning techniques in the medi-
cal field, addressing diverse areas. One notable area is international classification of diseases (ICD) 
coding, where clinical texts are classified using higher-level coded medical concepts (Hosseini et al., 
2018). Additionally, future diagnosis prediction has been a key focus, where temporal historical visit 
data is used to predict potential future diseases for patients, as demonstrated by Meng et al. (2020) 
and Ma et al. (2017). Another critical application of data science in healthcare is predicting and rank-
ing treatments based on their relevance, effectiveness, and potential side effects (Gerdes et al., 2021). 
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In this context, researchers have applied various machine learning and deep learning algorithms to 
classification, regression, and LTR problems, aiming to identify the most appropriate treatments – 
including medical procedures and medications – for diagnosed cases. These decisions are informed 
by numerous relevant factors, including the disease characteristics, symptoms, patient profile, and 
other crucial determinants (Levy et al., 2022). 

The vast number of diseases and treatments, including laboratory tests, radiology procedures, and 
medications, present significant challenges (Rehman et al., 2022). In this paper, we focus specifically 
on medications due to their critical role in disease treatment and their substantial share of the overall 
treatment landscape, both in terms of frequency and cost. Real-world datasets often suffer from data 
quality issues, which can hinder the effectiveness of predictive models used for treatment ranking 
(Norori et al., 2021). These issues may include the absence of critical features, such as accurate symp-
tom information, key aspects of patient profiles, and individual doctors’ preferences. However, these 
datasets also offer a rich source of historical data that can be leveraged to extract valuable insights 
and enhance predictive model performance. Our study utilizes an 18-month dataset of historical doc-
tor visits, including information on prescribed medications. By analyzing this historical data, we can 
calculate the frequency of medication usage for specific diseases. This frequency data can then be 
used as labels in LTR approaches, thereby improving the ranking of medications based on their pre-
scription frequencies (Electronic Health Solutions, 2019).     

These needs serve as the primary motivations for this study. LTR approaches could be pivotal in aid-
ing doctors in rapidly and accurately selecting the most appropriate medications that meet patient-
specific requirements and insurance company standards. This paper aims to experiment with and as-
sess the feasibility of LTR methods for ranking the top medical treatments per disease. Such an ap-
proach is expected to provide substantial benefits to doctors, patients, medical coders, and insurance 
companies by enabling a faster and more precise selection of medications that satisfy all stakeholders 
involved. We believe this paper makes several contributions that could positively impact the quality 
of medical services and reduce the time required for data collection. By ranking the most applicable 
medications, the accuracy of treatment coding could be enhanced, and the process of assigning treat-
ments by system users, including doctors and coders, could be significantly expedited. 

In summary, we summarize the main contributions of this paper into the following points: 

• Using data science approaches, such as LTR, and examining their effectiveness on real-world 
datasets. 

• Proposing a new approach that is based on LTR pointwise for ranking medicines.  
• Comparing our approach with a known benchmark approach in which three different LTR 

models – pointwise, pairwise, and listwise – have been tested on the same dataset. 

This paper is structured into seven sections. The Introduction section introduces the problem and 
outlines the objectives, providing an overview of the research problem, goals, and the overall struc-
ture of the paper. The Background section delves into the background of the issue, including an 
overview of standardized medical diseases and treatment codes, as well as a comprehensive descrip-
tion of the claims handling process within the insurance sector, highlighting the challenges related to 
data quality and flow. The Literature review section reviews related work in the field. In the Method-
ology section, we discuss the characteristics of the datasets, the proposed approach, data representa-
tion and preprocessing methods, LTR techniques, and relevant evaluation metrics. The Implementa-
tion section presents the implementation details, results, and a discussion of the findings. The 
Threats to validity section addresses potential threats to the validity of our study. The conclusion sec-
tion concludes the paper, summarizing the key insights and contributions. 
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BACKGROUND 
To gain a clearer understanding of the problem, it is essential to provide some contextual details. 
This paper focuses on applying LTR techniques to medical data, which necessitates a thorough expla-
nation of key features and labels, including the International Classification of Diseases (ICD) and 
Current Procedural Terminology (CPT) code lists. Additionally, the process of managing medical in-
surance claims is discussed, along with the relevant medical data formats and workflows associated 
with these claims. 

STANDARD MEDICAL CODED LISTS (ICD AND CPT) 
For a better understanding of the work presented in this paper, it is crucial to elaborate on the stand-
ardized medical coding systems utilized in the dataset. These codes play a significant role in structur-
ing the data and ensuring consistency. The standardization of disease classification began in the 
1850s (Scichilone & Giannangelo, 2013). The ICD-9, the ninth revision of the ICD, was widely 
adopted globally until 2015. Subsequently, the World Health Organization (WHO) introduced ICD-
10, which was endorsed by the World Health Assembly in 1990 and released for international use in 
1994. The United States implemented ICD-10 in October 2016, albeit with delays due to the com-
plexity, cost, and need for extensive training and system updates. The transition aimed to register 
new diseases and injuries while enhancing the standardization of coding by unifying its structure and 
allowing for more detailed descriptions when necessary. ICD-10 includes 69,823 disease diagnosis 
codes and 71,924 procedure codes, with lengths varying from 3 to 7 digits depending on the level of 
detail.  

The structure of an ICD-10 code is as follows: the first digit is a non-case-sensitive letter (A-Z, ex-
cluding “U”) representing the disease chapter, the second digit is a number, and digits three through 
seven are alphanumeric, providing further specificity. For example, “H” represents diseases related to 
the eye and ear. The remaining digits provide subcategories, and in some cases, an extension code is 
used, particularly for obstetrics, injuries, and external causes of injuries (Subotin & Davis, 2014). For 
instance, the code “S06.0x1A” refers to an injury classified as “Concussion with loss of conscious-
ness of 30 minutes or less, initial encounter” within the Injuries chapter, identified by the letter “S” 
and further categorized under “Intracranial injury” with the diagnostic code “S06.” It’s important to 
note that the detailed nature of ICD-10 codes allows for distinctions such as laterality (the specific 
side of the body) and the differentiation between a new occurrence of a disease and its recurrence. 
For example, different codes are assigned to the same eye disease depending on whether it affects the 
right or left eye. This granularity can impact prediction models, as the same disease might be repre-
sented by different features due to varying codes. However, the influence on prediction accuracy de-
pends on the specific use case and whether the objective is to differentiate between new cases and 
recurrences. 

 
Figure 1. ICD-10 code structure 

Current procedural terminology (CPT) is a standardized coding system created by the American 
Medical Association (AMA) to classify outpatient medical treatments performed by physicians. It 
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uses a 5-digit format, which can be numeric or alphanumeric depending on the CPT category, to en-
sure that medical and surgical services are uniformly coded across various electronic health record 
(EHR) systems, reimbursement systems, and other platforms. This standardization allows for seam-
less integration of procedural data between systems, reducing the need for complex, time-consuming, 
and error-prone mapping activities. The use of CPT codes is crucial because medical reimbursement 
entities, such as insurance companies and national healthcare programs, strictly enforce rules that re-
ject improperly coded procedures, incorrect treatments, or inconsistencies that could negatively im-
pact the reimbursement process. Additionally, accurate coding is essential for reliable reporting and 
analysis, which directly influences effective decision-making in healthcare.  

The CPT list is updated annually to reflect new medical and technological advancements and emerg-
ing needs. CPT is organized into three categories: Category I, Category II, and Category III. Category 
I consists of numeric codes for established procedures with specified payment amounts or costs. 
This category includes six main procedure types: Evaluation and Management, Anesthesia, Surgery, 
Radiology, Pathology and Laboratory, and Medicine. Category II includes alphanumeric codes for 
supplemental purposes related to evaluation and management procedures, without specific payment 
values, and encompasses 11 sections, such as Composite Measures and Physical Examination. Cate-
gory III codes are used for emerging technologies, temporary procedures, and services. 

Similarly, the International Classification of Diseases, 10th Revision, Procedure Coding System (ICD-
10-PCS) was developed as part of ICD-10 for coding inpatient medical services and procedures. 
ICD-10-PCS codes can be up to seven digits long, with each digit representing specific aspects such 
as the medical practice section, body system, and body part. However, not all reimbursement entities 
adhere to the ICD-10-PCS coding for inpatient procedures. Instead, some compile comprehensive 
CPT lists for outpatient procedures and manually aggregate inpatient procedures into a single list 
within their EHR systems. This approach is reflected in the dataset examined in this paper. 

MEDICAL INSURANCE CLAIMS PROCESS 
Medical insurance claims are categorized into two types: inpatient and outpatient. The process for 
handling inpatient claims starts when a patient either arrives at the hospital due to an emergency or is 
referred for in-hospital treatment by a specialized physician. In both scenarios, a comprehensive 
medical report from a specialist must be submitted for the insurance company’s approval. This ap-
proval or denial is determined by medical staff or representatives from the insurance company. The 
supporting medical reports, which may be scanned copies of handwritten or computer-generated 
originals, are registered in the insurance company’s system by approval staff. They enter general ap-
proval information, including the relevant ICD code, a summary description of the case based on the 
report, the doctor’s name, the hospital’s name, the admission date, and the expected cost. A chal-
lenge arises because the full scope of procedures is often not known at the time of entry but is deter-
mined after the patient’s discharge. Additionally, approvals may be partial, excluding certain uncov-
ered treatments or medications based on the insurance contract’s terms and conditions. 

For outpatient claims, the process is somewhat similar but with some distinctions. Preprinted physi-
cal treatment forms, each with a unique identifier called a “Form Number,” are distributed to insured 
members. When a patient visits a doctor’s clinic, the diagnosis and required treatments are handwrit-
ten on these forms. The patient then visits various service providers – such as laboratories, radiology 
centers, pharmacies, or physiotherapy centers – for the necessary tests, medications, or sessions. 
Each provider requests approval for their services, receiving a unique approval number over the 
phone, known as outpatient approval. Throughout the treatment cycle, the same form is used by dif-
ferent providers, who retain their copies and eventually compile them to submit to the insurance 
company for payment. This means a single medical case can result in multiple claims to the insurance 
company, but the unique form number links all these claims to one patient’s case.         

On a regular basis, typically monthly, hospitals provide hard copy files of discharged inpatient treat-
ment details and invoices to insurance companies. These files are submitted in batches corresponding 
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to different insured members. Similarly, outpatient service providers also submit their claims in batch 
form. Upon receipt, these batches are systematically numbered and registered, including details such 
as the provider’s name, the total number of claims, and the total claimed amount. The batches are 
then distributed to medical insurance claims entry teams, which are usually organized by provider 
specialties. The claims entry staff processes each batch by registering every claim and its correspond-
ing invoice separately. Throughout this process, both manual and systematic audits are conducted to 
ensure that only legitimate services and treatments are paid. Any amounts for excluded treatments are 
flagged and either not paid to the provider or recovered from the insured members if payment was 
made initially. 

During the claims and invoice entry process, pre-authorized approvals are verified and linked to their 
respective claims. Some insurance companies’ internal policies permit certain claims, such as profes-
sional fees for physical and biological examinations in doctors’ clinics and pharmacy prescriptions 
below specific monetary thresholds, to be accepted without prior approvals. 

From a data perspective, challenges arise due to the heterogeneous nature of data distributed across 
various EHR systems, which often suffer from data quality issues, particularly in the Jordanian 
healthcare sector. These challenges impact the effectiveness of robust predictive models and ma-
chine-learning applications in the medical domain. The following lists some of these challenges:     

• Heterogeneous data, such as missing features, incorrect values, handwritten text, abstracted 
descriptions, and outliers, are problematic for any machine-learning algorithm. 

• Not all relevant data is shared between the different provider types and the insurance com-
panies. Some important features with strong influential effects on predictive models’ perfor-
mance, like lab results, are not always shared with insurance companies. 

• No full medical data records exist in one single system as patients may visit different provid-
ers, and some of their visits are at their expense, not on the insurance company side, which 
makes some important historical data missing in insurance systems. 

• A lot of noisy data exists due to wrong data entry practices. For example, diagnoses are not 
registered at the correct level of detail, as mentioned earlier. Treatment codes are not entered 
correctly for many medical cases. 

• The ICD and treatment lists contain a huge number of instances that limit the ability to use 
well-known preprocessing techniques, such as one-hot encoding, as these create sparse data 
representations. Accordingly, some specialized data representation techniques may be re-
quired to cater to this problem.  

• Due to the high volume of medical claims and the high number of daily claims targets im-
posed on insurance medical claims staff members, some details are skipped during the claims 
entry process. For example, medicines and laboratory tests per clinical case are not entered in 
detail, but rather, information on medicines is entered under single high-level treatment code 
categories such as Local Medicines and Foreign Medicines, and all laboratory tests are aggre-
gated under the LABS CPT category.  

In our medical dataset, many challenges exist that prevent us from utilizing some important features 
due to the high empty value rates, such as patient-specific features, including age, gender, and Body 
Mass Index (BMI). 

RELATED WORK 
In this paper, we conducted a literature review to identify relevant works and potential approaches 
for addressing the problem of medicine ranking (Li et al., 2022; Miyachi et al., 2023; Torfi et al., 2022; 
Zeng et al., 2022; Zhang et al., 2022). Most related literature primarily addresses disease classification, 
specifically ICD coding clinical cases. These studies focus on predicting the relevant ICD codes for 
clinical cases by applying learning algorithms to heterogeneous clinical texts associated with these 
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cases. Fewer studies target the prediction of likely future diseases based on patient profiles and his-
torical medical data, with many of these focusing on the timing of disease occurrence. Very few stud-
ies, however, address the prediction of treatments based on patients’ historical data. 

The relevant literature can be categorized into two main areas: medical treatment prediction and 
medicine prediction and ranking. Research on medical treatment prediction does not specifically fo-
cus on medicines but rather on a range of treatment types, including procedures, lab tests, and medi-
cines. The second category focuses directly on medicines using two approaches: prediction and rank-
ing. 

In the realm of medical treatment prediction, only a few studies address this problem, with all treat-
ing it as a classification issue (Kelly, 2019; Zeng et al., 2022; Zhang et al., 2022). These studies aim to 
predict procedure codes for treatments using features related to patients, diseases, and clinical texts. 
Subotin and Davis (2014) proposed a system for predicting treatment codes based on clinical text 
features recorded in EHR systems. Their system leverages the hierarchical structure of ICD-10-PCS 
codes, categorizing them into two levels: a high-level concept and a lower-level code. High-level con-
cepts are extracted and mapped to the ICD-10-PCS code’s first and second digits, representing the 
Section and Body System, respectively. Regularized logistic regression classifiers are then applied to 
obtain confidence scores for medical concepts within the EHR narratives. Based on these scores, 
confidence scoring is calculated for codes under the predicted concept hierarchies. The authors used 
a modified version of the Mean Reciprocal Rank (MRR) metric to evaluate performance, achieving 
the best results with an MRR of 0.572. 

Levy et al. (2022) compared the performance of three text classification algorithms – XGBoost, Sup-
port Vector Machine (SVM), and BERT – using a dataset of pathological reports to predict treatment 
codes associated with these reports’ narratives. As a dimensionality reduction step, the authors uti-
lized topic modeling techniques, specifically UMAP and LDA, to transform the data into a format 
suitable for prediction. XGBoost and BERT demonstrated comparable performance, achieving me-
dian AUCs of 0.997 and 0.995, respectively. Haq et al. (2017) proposed a deep learning approach for 
treatment coding using an artificial neural network (ANN). This method employed separate embed-
ding matrices for each digit of medical claims ICD codes, which were then concatenated to form a 
dense representation of the complete ICD code. The proposed model outperformed a probabilistic-
based model and the association rule mining algorithm, apriori, achieving a Recall@3 of 90% and a 
Precision@3 of 45%. 

In the domain of medicine prediction and ranking, most studies have focused on either predicting 
medicines or ranking them based on efficacy and toxicity rather than prescription frequencies, which 
is the focus of our proposed approach (Jin & Garg, 2023; Lu, 2023; Ru et al., 2022; Vaishya & Misra, 
2022; S. Yang et al., 2021). To the best of our knowledge, no prior work has addressed the problem 
of LTR for medicines based on prescription frequencies. 

Kumar et al. (2021) introduced a multi-layer neural network approach for predicting general medi-
cines by identifying accurate medical combinations for patients who cannot find suitable medications 
at pharmacies. The proposed methodology utilized Quantum Neural Networks (QNN) to predict 
appropriate general medicines based on disease symptoms. This model achieved 95% accuracy, sur-
passing SVM, Random Forest, and Naïve Bayes classifiers. 

Recent advancements in machine learning, deep learning, and LTR algorithms have been applied to 
predict and rank drugs. Several studies have illustrated the use of these algorithms to make predic-
tions and rankings based on factors such as efficacy, toxicity, and side effects (Gerdes et al., 2021). 

In the field of medicine prediction, Lavecchia (2019) introduced a deep-learning approach to predict 
drug efficacy and toxicity. The study employed a public chemical biology dataset to evaluate their 
model, utilizing deep learning algorithms such as convolutional neural networks (CNNs) and recur-
rent neural networks (RNNs). The model achieved a root mean square error (RMSE) of 0.32 for 
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drug efficacy prediction and 0.29 for drug toxicity prediction. Similarly, Zhu et al. (2021) applied ma-
chine learning algorithms to predict drug efficacy using genomic data. Their model was evaluated us-
ing publicly available genomic datasets that incorporated algorithms, including support vector ma-
chines (SVMs) and random forest (RF). The reported RMSE for drug efficacy prediction was 0.32, 
and for drug toxicity prediction, it was 0.29. 

In the domain of medicine ranking, Gerdes et al. (2021) employed deep learning and network analysis 
to rank drugs based on efficacy and toxicity. Using a public chemical biology dataset, their model in-
tegrated deep learning algorithms with network analysis techniques, achieving a Mean Reciprocal 
Rank (MRR) of 0.76. Zhou et al. (2020) proposed a machine-learning approach for ranking drugs 
based on efficacy and side effects. Their model, which was evaluated using a publicly available chemi-
cal biology dataset, utilized algorithms such as SVMs and RF. This approach achieved a mean aver-
age precision (MAP) of 0.82 for drug ranking based on efficacy and side effects. Chakradhar (2017) 
utilized LTR algorithms to rank drugs for repositioning, leveraging heterogeneous data sources. The 
study integrated public chemical biology datasets with drug-disease association data to evaluate their 
model. The LTR algorithms demonstrated effectiveness, achieving a mean reciprocal rank (MRR) of 
0.73 for drug repositioning based on these diverse data sources. 

Thus, Table 1 presents the key studies in the literature on medicine ranking. The findings indicate 
that machine learning, deep learning, and LTR algorithms hold significant promise for improving the 
prediction and ranking of medicines. These algorithms can enhance the accuracy and efficiency of 
predictions and rankings, making them valuable tools in the medical field. The limited use of LTR 
approaches in existing studies further underscores the relevance and motivation for our work. 

Table 1. Related works summary 

Reference Dataset Approach Training 
testing split 

Algo-
rithms Measure Performance 

Subotin 
and Davis 
(2014) 

Corpus of 28,536 
EHRs (individual 
clinical records) 

Calculating scores for 
the first and second 
digits of CPT generat-
ing concepts for them 
and estimating their 
probability 

5-fold cross-
validation 

Logistic 
regression 

Modified 
version of 
Mean Re-
ciprocal 
Rank 
(MRR) 

MRR = 0.572 

Haq et al.  
(2017) 

2.3 million insur-
ance claims from a 
U.S.-based billing 
company 

Embedding layer to 
handle one-hot 
encoded matrix for 
the 7 digits of ICD 9 
code  

2.3 million 
claims for 
training and 
70k claims for 
testing  

ANN 
apriori 

Precision 
Recall@k  

Recall @ 3 
= 90%  
Precision @ 3 
= 45%  

Levy et al. 
(2022) 

93,039 pathology 
reports  

Topic modeling tech-
niques using UMAP 
and LDA  

5-fold cross 
validation 

XGBoost 
SVM  
BERT 

AUC 

XGBoost AUC = 
0.997  
SVM AUC = 
0.977 
BERT = 0.995  

Kumar et 
al. (2021) 

Data from private 
EHR System 

Deep learning models 
called quantum neural 
networks are used to 
predict general medi-
cines. 

Not 
mentioned ANN  Accuracy  

SVM: 85%;  
RF: 88%;  
NVB: 90%; 
QNN: 95% 

Li et al. 
(2022) 

Publicly available 
chemical biology 
dataset  

Deep learning algo-
rithms and network 
analysis to rank drugs 
based on their efficacy 
and toxicity 

5-fold 
cross 
validation 

ANN 

Mean 
Reciprocal 
Rank 
(MRR)  

MRR = 0.76  

S. Yang et 
al. (2021) 

Publicly available 
chemical biology  

Machine learning algo-
rithms, including sup-
port vector machines 
(SVMs) and random 
forest (RF) 

70% training, 
20% valida-
tion and 10% 
testing 

SVM 
RF 

Mean 
Average 
Precision 
(MAP) 

MAP = 0.82 

mailto:precision@k
mailto:precision@k
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METHODOLOGY 
In this section, we explain the proposed model and the steps required to build the model, such as 
data preparation and preprocessing. Moreover, we will take a deep look at the available LTR models 
and the relevant LTR evaluation metrics. 

THE DATASET 
The datasets used in this study include confidential information on medical treatments sourced from 
an insurance company. To ensure privacy, the dataset has been anonymized, with personally identifi-
able information (PII) removed. Each insured member and healthcare provider has been assigned a 
unique identification number. The dataset is organized into monthly cohorts of patient treatments, 
with the same disease potentially appearing multiple times and accompanied by varying lists of medi-
cations, often derived from different active ingredients. Treatment records from different months 
have been designated as test datasets, while records from other months have been used for training 
and validation purposes. The raw dataset contains historical treatment records that demonstrate the 
co-occurrence of diseases and medications based on the frequency of patient visits to healthcare pro-
viders for the same condition and the treatments received. This historical treatment data includes 21 
features, as detailed in Table 2, and Table 3 presents key statistics related to the raw data. 

Table 2. Raw dataset features description 

Feature 
no. 

Feature 
name Data type Description Data sample 

1 Case no. Numerical The unique medical case number  11595749 
2 Patient ID Numerical The patient’s unique identifier 149618 
3 Claim ID Numerical The unique claim identifier of the 

patient’s medical case 
14111353 

4 Treatment 
date 

Date The date of medical case occurrence 27/12/2021 

5 Provider ID Numerical The medical provider’s unique 
identifier 

565720 

6 ICD code Categorical The ICD code for the medical case 
diagnosis 

J00 

7 ICD name 
EN 

Categorical The ICD name in English for the 
medical case diagnosis 

Acute nasopharyngitis (com-
mon cold) 

8 ICD name 
AR 

Categorical The ICD name in Arabic for the 
medical case diagnosis 

 الرشح

9 Main parent 
code 

Categorical The main ICD code for which the 
current disease belongs 

J00–J99 

10 All names 
to the main 
parent 

Categorical The list of all disease names in the 
tree branch from the current disease 
code to the main parent code 

Acute nasopharyngitis (com-
mon cold) || --> || acute 
upper respiratory infections 
|| --> || diseases of the 
respiratory system  

11 Service ID Numerical Unique Identifier of Medical 
Treatment (medicine) 

74425 

12 Service 
code 

Categorical Unique code of medical treatment 
(medicine) 

PHR1031 

13 Medicine 
name 

Categorical The name of the medicine Biodal 5000 IU tab (60) 

14 Generic 
name 

Categorical The generic name of the medicine (Cholecalciferol (vitamin 
D3): 5000 IU) cap/tab [oral] 

15 Unit type Categorical The unit in which the medicine is sold Tablet 
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Feature 
no. 

Feature 
name Data type Description Data sample 

16 Dosage 
form 

Categorical The form in which the medicine is 
given to the patients 

Cap/Tab 

17 Package 
type 

Categorical The package type in which the group 
of medicine unit types are packed and 
distributed  

Container 

18 Package 
size 

Categorical The smallest size in which the 
medicine packages are distributed 

60s 

19 Ingredients Categorical The active ingredient of the medicine Cholecalciferol 
(vitamin D3) 

20 Strength Categorical The strength of the active ingredient 
per each size unit of the medicine 

5000 IU 

21 Dosage unit Categorical The unit in which the medicine’s 
dosage is sold 

Tablet 

THE PROPOSED APPROACH  
Our approach involves developing pointwise deep-ranking models to first predict the probabilities of 
active ingredients in medicines for each disease. Subsequently, for the top k predicted active ingredi-
ents, we employ another pointwise deep-ranking model to estimate the probabilities of medicines as-
sociated with each disease and its corresponding ingredients. This two-stage process aims to accu-
rately predict the top medicine for each active ingredient used in treating each disease. We tested two 
values for k – the average and the median number of active ingredients per disease – as these are 
commonly used configurations. 

To evaluate the robustness of our approach and models, we conducted 18 cross-validation trials, 
training prediction models and assessing their performance on different testing datasets. This number 
of trials was chosen because our primary dataset spans treatments over 18 different months. For each 
trial, we used one month of treatment data as the test dataset, another month for validation, and the 
remaining 16 months for training. In each trial, we developed a separate deep-learning regression 
model for each label to predict its probability values. This resulted in 201 deep-learning regression 
models for the ingredient prediction task across the 18 trials. For the medicine prediction task, the 
number of models varied according to the number of unique medicines in each training dataset, with 
a maximum of 1,754 unique medicines, as indicated in Table 3. To create the necessary ranking mod-
els, the datasets for each trial were prepared to ensure that ingredient and medicine probabilities 
could be accurately calculated and predicted based on features relevant to the diseases. 

Table 3. Important dataset statistics 

Statistic Value 
Number of instances 53,792 
Number of cases (visits) 18,204 
Number of patients 13,547 
Number of unique diseases 237 
Number of unique ingredients 201 
Number of unique medicines 1,754 
Average number of unique ingredients per disease  8 
Median number of ingredients per disease  3 
Maximum number of unique ingredients per disease  99 
Average number of unique medicines per disease  46 
Maximum number of unique medicines per disease  603 
Average number of unique medicines per disease and ingredient 6 
Maximum number of unique medicines per disease and ingredient 33 
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The dataset statistics presented in Table 3 indicate that, on average, each disease is associated with 
medicines from approximately eight unique ingredients, while the median number of ingredients per 
disease is 3. These figures correspond to the k-predicted ingredients in the first model of ingredient 
prediction, as previously mentioned. Figure 2 illustrates the implementation steps of the proposed 
approach. To evaluate the effectiveness of our proposed method, we compared it with an alternative 
approach based on a well-established data representation method used in document retrieval prob-
lems. This comparison involved representing the data using the LibSVM format (Chang & Lin, 
2011), where each instance of the query-document pair – disease-medicine in this context – is encap-
sulated with the query ID and relevance score in a standardized format. 

 

 
Figure 1. Proposed approach implementation steps 

 

Chang and Lin (2011) provided an overview of the LIBSVM library, which includes tools for format-
ting data in the LibSVM format. The paper offers a comprehensive explanation of this format, detail-
ing specifications for representing both sparse and dense data. The authors highlight the benefits of 
using the LibSVM format for machine learning tasks, including efficient data storage and retrieval. 
The LibSVM format is commonly employed in LTR tasks due to its straightforward and efficient im-
plementation of various LTR algorithms, such as those used in TensorFlow ranking models 
(Pasumarthi et al., 2019), with different loss functions. By comparing the performance of our pro-
posed approach with this benchmark, we aim to demonstrate the effectiveness of our method. The 
LibSVM format, illustrated in Figure 3, is designed for sparse data and comprises three main compo-
nents: the relevance score, the query ID, and a numerically labeled list of query-document features. 
This representation differs from our approach, where labels are represented as one-hot vectors of 
medicine probabilities rather than a single numerical feature per disease-medicine instance. Figure 4 
provides a sample of the data in LibSVM format. After converting our data to this format, we uti-
lized TensorFlow’s TF Ranking library – a new tool for LTR tasks in TensorFlow – to build three 
models representing pointwise, pairwise, and listwise algorithms. We then evaluated these models 
across the same 18 trials and compared their performance to our approach. 
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Figure 2. LibSVM format 

 

 
Figure 3. LibSVM format 

DATA PREPARATION AND PREPROCESSING 
Data preprocessing is a critical step that significantly impacts the performance of predictive models. 
As outlined in Table 2, the dataset primarily consists of categorical features, with a few numerical and 
date features. Given that our models will be built using deep learning techniques, extensive prepro-
cessing is not required. Identifier features, along with certain medicine-specific attributes such as 
medicine name, dosage form, package type, package size, strength, and dosage unit, have been ex-
cluded. These features were removed because medicines are the target labels we aim to rank, and our 
data processing pipeline focuses on predicting medicine ingredients as an intermediary step toward 
predicting the medicines themselves. Additionally, medicine name features were omitted since their 
information is incorporated into a more comprehensive feature, “All Names to Main Parent.” 

In alignment with the proposed approach, we generated 18 distinct datasets from the original dataset. 
Each dataset was divided into three subsets: a test dataset comprising one month of treatments, a val-
idation dataset containing a different month of treatments, and a training dataset with the remaining 
16 months of treatments from the original dataset. To develop deep ranking models as outlined in 
the previous section, each training, validation, and testing dataset was aggregated by disease-medicine 
features. This aggregation enabled the calculation of ingredient and medicine probabilities for each 
split of the overall dataset across all trials. As a result of this aggregation process, the total number of 
instances was significantly reduced from 53,792 to 12,585. Additionally, four new features were cre-
ated to represent ingredient counts and ratios, as well as medicine counts and ratios for each disease. 
Table 4 presents the aggregated dataset and the calculated probabilities, including three sample rec-
ords to provide further insights. 



Farouqa & Azzeh 

13 

Table 4. The resulting dataset after aggregation and probabilities calculation 

Feature 
name Feature description Sample record 1 Sample record 2 Sample record 3 

ICD code International code of disease 
(ICD) 

R05 J00 N39.0 

Main 
parent 
code 

The main ICD code for which the 
current disease belongs 

R00–R99 J00–J99 N00–N99 

All names 
of the 
main 
parent 

The list of all disease names in the 
tree branch from the current dis-
ease code to the main parent code 

Cough || --> || 
symptoms and 
signs involving 
the circulatory 
and respiratory 
systems || --> 
|| symptoms, 
signs, and abnor-
mal clinical and 
laboratory find-
ings not else-
where classified  

Acute naso-
pharyngitis 
(common cold) 
|| --> || acute 
upper respiratory 
infections. || --
> || diseases of 
the respiratory 
system  

Urinary tract in-
fection, site not 
specified || --> 
|| other disor-
ders of urinary 
system || --> || 
other diseases of 
the urinary sys-
tem || --> || 
diseases of the 
genitourinary 
system  

Service 
code 

Unique code of medical treatment 
(medicine) 

PHR5066 PHR1031 PHR1045 

Ingredi-
ents 

The active ingredient of the 
medicine 

Mometasone 
furoate 

Cholecalciferol 
(vitamin D3) 

CEFIXIME 

Ingredient 
in ICD 
Count 

The frequency of using the cur-
rent ingredient with the current 
disease in the historical data for 
the current RECORD_TYPE   

1 5 5 

Ingredient 
in ICD 
Ratio 

The frequency ratio of using the 
current ingredient with the current 
disease proportional to all ingredi-
ents’ frequencies used to the same 
disease in the historical data for 
the current RECORD_TYPE   

0.09090909 0.00740741 0.23809524 

Medicine 
in ICD 
Count 

The frequency of using the 
current treatment (medicine) with 
the current disease in the 
historical data for the current 
RECORD_TYPE   

1 1 1 

Medicine 
in ICD 
Ratio 

The frequency ratio of using the 
current treatment (medicine) with 
the current disease proportional to 
all treatments (medicines) 
frequencies used for the same 
disease in the historical data for 
the current RECORD_TYPE   

0.09090909 0.00148148 0.04761905 

 

In our approach, we propose a two-step modeling process: first, for predicting ingredients, and sec-
ond, for predicting medicines. This requires creating two distinct datasets from the original aggre-
gated dataset for each trial, one for each model. The ingredients prediction dataset is constructed by 
utilizing only the calculated ingredient probabilities for each disease. This dataset contains one record 
per disease, including disease features and a list of all unique ingredients with values representing 
each ingredient’s associated ratio or probability with the disease in the current record. Similarly, the 
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medicines prediction dataset is created by focusing on medicine probabilities. In this dataset, the la-
bels list consists of medicine probabilities, and the ingredient feature is included as a one-hot en-
coded list of all ingredients associated with each disease. The categorical features “Main Parent 
Code” and “ICD code” for medicines are also represented as one-hot encoded vectors. We observed 
that the textual feature “All Names to Main Parent” is highly relevant to our labels, as it provides a 
description of the diagnosed disease and its hierarchical parent diseases in the ICD classification. 
Therefore, this feature was included in our input data. 

In handling textual data within deep learning models, natural language processing (NLP) techniques 
have been employed to process the “all names to main parent” textual feature. This process involved 
removing punctuation and stop words using the NLTK library, converting all words to lowercase, 
applying stemming with SnowballStemmer, and representing the feature as a TF-IDF vector using 
scikit-learn’s TfidfVectorizer. Table 5 illustrates a sample of the “all names to main parent” feature 
before and after NLP processing while Table 6 presents a sample of the resulting text after TF-IDF 
vectorization. For the benchmark approach, each instance of the second dataset was formulated by 
assigning medicine probabilities as score values and providing a unique query ID for each disease 
code. The feature vectors were formatted to comply with the LIBSVM specification, where feature 
vector values are preceded by a feature number and a colon. 

Table 5. Sample of “all names to main parent” feature before and after NLP 
(The output of the NLP tokenization process is partial words.) 

All names to main feature - before NLP After NLP 
Cough || --> || symptoms and signs involving 
the circulatory and respiratory systems || --> || 
symptoms, signs, and abnormal clinical and la-
boratory findings not elsewhere classified  

Cough symptom sign involv circulatori respir-
atori system symptom sign abnorm clinic la-
boratori find elsewher classifi 

Pain in throat and chest || --> || symptoms and 
signs involving the circulatory and respiratory 
systems || --> || symptoms, signs, and abnor-
mal clinical and laboratory findings not elsewhere 
classified  

Pain throat chest symptom sign involv circula-
tori respiratori system symptom sign abnorm 
clinic laboratori find elsewher classifi 

Abdominal and pelvic pain || --> || symptoms 
and signs involving the digestive system and ab-
domen || --> || symptoms, signs, and abnormal 
clinical and laboratory findings, not elsewhere 
classified  

Abdomin pelvic pain symptom sign involv di-
gest system abdomen symptom sign abnorm 
clinic laboratori find elsewher classifi 

Nausea and vomiting || --> || symptoms and 
signs involving the digestive system and abdo-
men || --> || symptoms, signs, and abnormal 
clinical and laboratory findings not elsewhere 
classified  

Nausea vomit symptom sign involv digest sys-
tem abdomen symptom sign abnorm clinic la-
boratori find elsewher classifi 

Symptoms and signs involving the nervous and 
musculoskeletal system || --> || symptoms, 
signs, and abnormal clinical and laboratory find-
ings not elsewhere classified  

Symptom sign involv nervous musculoskelet 
system symptom sign abnorm clinic laboratori 
find elsewher classifi 
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Table 6. All names to main parent feature after TDF-IDF vectorization 

Item Value 
Processed text abdomin pain abdomin pelvic pain symptom sign involv digest sys-

tem abdomen symptom sign abnorm clinic laboratori find else-
wher classifi   

Shape of vectorized version (1, 2464) 
Vectorized version array ([0.14585238, 0.14585238, 0.14585238, ..., 0. , 0. , 0.]) 

LEARN TO RANK (LTR) APPROACHES 
LTR approaches originated in the late twentieth century and gained prominence with the widespread 
adoption of the internet and the World Wide Web, particularly within search engines, which serve as 
the primary interface for content searchers. The demand for LTR arose specifically to address infor-
mation retrieval (IR) problems, where the objective is to deliver the most relevant documents in re-
sponse to user queries, ordered to reflect their relevance, with the most pertinent documents appear-
ing at the top of the list. 

LTR is considered a supervised machine learning technique wherein ranking models are generated 
automatically based on labeled training datasets (Shi et al., 2010). Given that the primary goal of LTR 
algorithms is to rank results by relevance or importance, specialized metrics have been developed to 
evaluate these models. Common metrics in this domain include mean average precision (MAP), mean 
reciprocal rank (MRR), Precision@n, Recall@n, discounted cumulative gain (DCG), and normalized 
discounted cumulative gain (NDCG). LTR approaches can be categorized into three main types: 
pointwise, pairwise, and listwise. Pointwise methods assign numerical or ordinal ranking scores to in-
dividual items based on a loss function, subsequently ordering all documents according to these 
scores. These methods are typically treated as regression problems because the predicted results are 
numerical scores. Pairwise approaches, in contrast, evaluate pairs of documents and rank them ac-
cording to the differences in their relative scores. The loss function in pairwise methods focuses on 
the relevance difference between pairs. A notable limitation of pairwise approaches is their computa-
tional intensity, which can restrict scalability and application to large datasets (Shi et al., 2010). Promi-
nent pairwise LTR algorithms include SVMRank (Joachims, 2002), RankBoost (Freund et al., 2003), 
RankNet (Burges et al., 2005), and LambdaRank (Burges et al., 2010). Listwise approaches, on the 
other hand, use entire lists of items or instances for learning. They are distinguished from other LTR 
methods by their objective of directly optimizing ranking metrics. Listwise approaches have demon-
strated superior performance compared to pairwise methods. Examples of popular listwise LTR al-
gorithms include LambdaMart and ListNet (Cao et al., 2007). 

Although LTR approaches have predominantly focused on information retrieval (IR) problems, their 
applicability and popularity have also extended to recommender systems. In the context of recom-
mender systems, the ranked results pertain to tangible and intangible items, products, and services 
such as movies, books, and e-commerce goods. Two well-known techniques in recommender sys-
tems are content-based filtering and collaborative filtering (CF). Content-based filtering relies on data 
features related to the items themselves, while CF, recognized as one of the most successful recom-
mendation techniques (Shi et al., 2010), leverages user-profiles and behavioral data. 

In recommender systems, the analogy to IR is that item or user behavior features represent queries, 
and the resulting items correspond to the retrieved documents. Various methods exist for applying 
LTR approaches in recommender systems. For collaborative filtering, examples of listwise methods 
include CLiMF (Shi et al., 2012a), CoFiRank (Weimer et al., 2007), and TFMAP (Shi et al., 2012b). 
Pairwise methods include EignRank, Probabilistic Latent Preference Analysis (Liu & Yang, 2008; Liu 
et al., 2009), and Bayesian Personalized Ranking (BPR) (Rendle et al., 2012). Listwise approaches 
generally offer better scalability. 
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As described in the methodology section, we evaluate our proposed approach by comparing it with a 
benchmark approach that employs three LTR algorithms – pointwise, pairwise, and listwise. Specifi-
cally, we apply RankNet and ListNet algorithms to our data, which has been represented in LibSVM 
format and processed using the TensorFlow Ranking library. 

EVALUATION METRICS 
Several metrics are available for evaluating the performance of ranking algorithms. Some metrics are 
designed for binary relevance ranking problems, where the focus is on predicting relevant documents 
and positioning them at the top of the prediction list without considering their order among each 
other. In such cases, if two algorithms successfully place all k relevant results within the top k pre-
dicted list, they receive the same score of “1,” regardless of the specific order of the items within 
these top k results. 

Recall@k and Precision@k are examples of binary classification metrics adapted to measure the per-
formance of LTR algorithms. The variable k represents the number of top items of interest. For in-
stance, if we are interested in the top ten recommended results, k is set to 10. Recall@k measures the 
proportion of correctly identified relevant items within the top k predicted results compared to the 
total number of relevant items or documents. Conversely, Precision@k assesses the proportion of 
correctly identified relevant items within the top k predicted results relative to the total number of 
retrieved items or documents. Precision@k is defined as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃@𝑘𝑘 =  
# 𝑃𝑃𝑜𝑜 𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑅𝑅 𝐼𝐼𝑅𝑅𝑃𝑃𝐼𝐼𝑃𝑃 𝑃𝑃𝑃𝑃 𝑅𝑅ℎ𝑃𝑃 𝑅𝑅𝑃𝑃𝑡𝑡 𝑘𝑘 𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑟𝑟 𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑅𝑅𝑅𝑅𝑃𝑃

# 𝑃𝑃𝑜𝑜 𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑟𝑟 𝐼𝐼𝑅𝑅𝑃𝑃𝐼𝐼𝑃𝑃
 (1) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅@𝑘𝑘 =  
# 𝑃𝑃𝑜𝑜 𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑅𝑅 𝐼𝐼𝑅𝑅𝑃𝑃𝐼𝐼𝑃𝑃 𝑃𝑃𝑃𝑃 𝑅𝑅ℎ𝑃𝑃 𝑅𝑅𝑃𝑃𝑡𝑡 𝑘𝑘 𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑟𝑟 𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑅𝑅𝑅𝑅𝑃𝑃

# 𝑃𝑃𝑜𝑜 𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑅𝑅 𝐼𝐼𝑅𝑅𝑃𝑃𝐼𝐼𝑃𝑃
 (2) 

where k is the number of top items or documents we are interested in. 

Mean average precision (MAP) is an appropriate metric for our diagnosis prediction problem because 
it accounts for the ranks of results and provides a comprehensive numerical measure of overall classi-
fier or ranker performance. Average precision (AP) is computed by averaging the precision values at 
the ranks of relevant items or documents while excluding precision values at irrelevant ranks. This 
metric is weighted towards the top of the ranking, meaning that a higher rank (e.g., rank 1) has more 
influence on the score than lower ranks (e.g., rank 2, rank 3, etc.). AP can be calculated for any num-
ber n of top-ranked items, where n represents the total number of predicted labels. The AP is ex-
pressed as follows: 

𝐴𝐴𝑃𝑃𝑛𝑛 =  
1

# 𝑃𝑃𝑜𝑜 𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑅𝑅 𝐼𝐼𝑅𝑅𝑃𝑃𝐼𝐼𝑃𝑃
�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃@𝑘𝑘
𝑛𝑛

𝑘𝑘

 x  𝑃𝑃𝑃𝑃𝑅𝑅@𝑘𝑘 (3) 

where n refers to the total number of documents that we are interested in, and rel@k is a relevance 
function that equals 1 if the item, or document, at rank k is relevant and equals 0 otherwise. 

The mean average precision is the mean of total instances or queries’ average precisions. The mean 
average precision is expressed as the following: 

𝐼𝐼𝐴𝐴𝑃𝑃 =  
1
𝑃𝑃
�AP𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (4) 

where n is the number of instances or queries.  
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As indicated in Equation (3), average precision (AP) is computed for binary relevance classification, 
where each class label is considered either relevant or irrelevant. However, in some scenarios, 
measures of relevance are more nuanced, such that the relevance of an item is assessed with a score 
rather than a simple binary classification. In such cases, both the presence of relevant items within 
the top k results and their order based on relevance scores are crucial. For instance, if all five relevant 
items appear within the top five ranks, the AP would be 1. Nevertheless, in document retrieval tasks, 
this does not fully capture the desired outcome. The relevance scores of the documents significantly 
impact their ranking, and the goal is to prioritize the most relevant documents at the top, followed by 
the next most relevant, and so on. 

To address the need for ranking relevant labels more comprehensively, metrics have been developed 
that not only account for the retrieval of relevant labels but also consider their order based on prede-
fined relevance scores. These metrics ensure that labels with higher relevance scores contribute more 
to the overall metric value if they appear earlier in the prediction list rather than later. 

A prominent example of such a metric is normalized discounted cumulative gain (NDCG). NDCG 
takes into account the order of top-ranked relevant documents and penalizes irrelevant items at the 
top of the list more heavily than those at the bottom. NDCG@k, where k represents the number of 
top-ranked items of interest, is a common formulation. Discounted cumulative gain (DCG) measures 
relevance for a single query but does not provide a comprehensive measure for an entire ranking al-
gorithm due to the variability in query results. NDCG addresses this issue by normalizing the DCG 
across all queries and dividing each query’s DCG by the DCG of the ideal ranking or ground truth 
ranked results. The DCG is expressed as follows: 

𝐷𝐷𝐷𝐷𝐷𝐷@𝑘𝑘 =  �
𝑃𝑃𝑃𝑃𝑅𝑅𝑖𝑖 

𝑅𝑅𝑃𝑃𝑙𝑙2(𝑃𝑃 + 1)

𝑘𝑘

𝑖𝑖=1

 (5) 

where  𝑃𝑃𝑃𝑃𝑅𝑅𝑖𝑖, is the graded relevance of the result at position i, and k is the top-rank position. 
nDCG is expressed as the following: 

𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘 =  �
𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘 
𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘

𝑘𝑘

𝑖𝑖=1

 (6) 

where 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘 is the ideal DCG for the top-rank position k. 

The NDCG metric has certain limitations. One notable issue with DCG is that it does not penalize 
missing or erroneous data in the results, allowing systems that produce irrelevant or incorrect results 
to still achieve high scores. This can obscure the true quality of the system’s output. Additionally, 
DCG may not accurately assess performance in cases where multiple results are equally relevant. In 
such situations, the score might not reflect the actual quality of the results. Given these limitations, 
we believe NDCG is suitable for our needs in ranking and ordering medical treatments, as it aligns 
with our goal of listing the top relevant medicines in a manner that accurately represents a doctor’s 
preferences for the medical case. Consequently, we have chosen to use NDCG@k as our perfor-
mance metric. 

IMPLEMENTATION 
This section describes the implementation of the prediction models in detail, including our data pro-
cess pipeline pointwise deep ranking models and the benchmark approach models. Moreover, the re-
sults are presented and discussed thoroughly. 
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IMPLEMENTATION ENVIRONMENT 
The models were developed using Google Colab, an online platform provided by Google that facili-
tates the execution of Python code and the utilization of various libraries. During the implementation 
phase, several data science-related Python libraries were employed, including NumPy, Pandas, 
NLTK, Matplotlib, Scikit-learn, TensorFlow, and TensorFlow Ranking. 

BUILDING THE FIRST MODEL (INGREDIENTS PREDICTION) 
The initial model was constructed with a single input layer designed to accommodate a float vector of 
size 2,723, representing the TF-IDF vectorized textual data from the “ICD All Names to Main Par-
ent” feature. This feature was generated during data preprocessing, following the concatenation with 
one-hot encoded vectors corresponding to the “Main Parent Code” and “ICD Code” features. Sepa-
rate hidden layers were implemented for each of the 201 unique ingredient output labels within the 
model. To address the risk of overfitting, dropout layers were incorporated after the first and second 
hidden layers, each with a dropout rate of 20%. Each branch of hidden and dropout layers led to a 
single output layer, with one output node predicting probability values for the specific label. 

For each label prediction, input data vectors were processed through a TensorFlow Keras embedding 
layer, with an input dimension of 10,000 and an output dimension of 128. The embedding layer was 
initialized uniformly and had an input length of 25, reflecting the maximum word length of the “All 
Names to Main Parent” feature in the training dataset after applying natural language processing 
techniques. The output tensor from the embedding layer was directed to a GlobalAveragePooling1D 
layer, which averaged the values across all input vectors for each of the 128 dimensions, producing a 
tensor of shape (None, 128). 

This tensor was then passed through two hidden dense layers, both employing the “ReLU” activation 
function. The first hidden dense layer contained 32 nodes, followed by a second layer with eight 
nodes. The tensor emerging from the dropout layer after the second hidden layer was finally fed into 
a dense output layer, utilizing a “Linear” activation function and featuring a single node, as previously 
described. Figure 5 illustrates the components of the first model. 

 
Figure 4. First model – Ingredients Prediction Models 

The models were compiled using the mean squared error (MSE) loss function, chosen due to the 
sparse nature of the ingredient labels vector, which contains numerous zero probability values along-
side labels with very low probabilities relative to others with higher probabilities. MSE was particu-
larly effective in penalizing the misprediction of extreme values. The ADAM optimizer was em-
ployed, and it is known for its efficiency in stochastic optimization, particularly in regression tasks. A 
learning rate of 0.01 was selected, which produced favorable results after experimenting with various 
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rates. Finally, the model was trained on the training dataset and validated on the validation dataset 
across 100 epochs. The number of epochs was determined based on the maximum required by one 
of the top 10 occurring ingredient labels’ loss curves. Notably, for the ingredient label “DE-
SLORATADINE,” the model showed stabilization in loss reduction around the 100th epoch, as de-
picted in Figure 6. 

 
Figure 5. Loss curves for the “DESLORATADINE” ingredient label 

BUILDING THE SECOND MODELS (MEDICINES PREDICTION) 
For the second set of medicine prediction models, the same training and testing datasets were utilized. 
However, these models incorporated the medicine ingredients as part of the input vector. New models 
were created based on the same diseases and all associated ingredients from the training dataset. 
Similar to the initial ingredient prediction models, the input data were used in a single input layer, after 
which separate model branches were developed for each output label. In this case, the output labels 
represent the predicted probabilities of medicines for each disease. These models were subsequently 
employed to predict the medicine probabilities for each disease in the test dataset after associating 
each disease with its top eight predicted ingredients from the first set of models. For each disease-in-
gredient combination, the medicine with the highest predicted probability among all relevant medi-
cines was selected, resulting in eight predicted medicines per disease. 

The input vector from the initial ingredient prediction model is concatenated with a one-hot encoded 
vector representing the medicine ingredients, as previously described. For each label prediction path, 
similar to the ingredient prediction models, the input vectors are processed through an embedding 
layer, followed by global average pooling, two hidden layers, each accompanied by a dropout layer, 
and a final dense output layer. All layers utilize the same activation functions and neuron counts as in 
the first models. However, the number of training epochs is reduced to 30, determined after analyz-
ing the loss curves of the top ten medicines, as was done for the initial model. 

IMPLEMENTING THE BENCHMARK APPROACH ’S MODELS 
As detailed in the proposed approach subsection, our objective is to compare our proposed approach 
with an alternative approach where data is represented in LIBSVM format. In this comparison, we 
develop three deep learning models corresponding to pointwise, pairwise, and listwise ranking algo-
rithms. After converting the data into LIBSVM format, the features are inputted in padded batches 
of 32. These input batches undergo batch normalization. Subsequently, we constructed three models 
with an input layer shaped as batch size and the number of features. Each model includes three hid-
den layers, consisting of 128, 64, and 32 neurons, respectively, each employing the ReLU activation 
function. The output layer of each model contains a single neuron with a linear activation function. 
The models are compiled using the Adam optimizer with a learning rate of 0.01. For the pointwise 
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model, we applied the Mean Squared Error loss function, while the pairwise model utilized Pairwise 
Hinge Loss (Goodfellow et al., 2016), and the listwise model used the List MLE loss function (Jansen 
et al., 2008). The following is a description of each loss function used: 

• Mean Squared Error (MSE): MSE is a commonly used loss function for regression prob-
lems. In TensorFlow ranking, MSE is used to measure the difference between predicted 
scores and ground truth labels. The loss is calculated by squaring the difference between the 
predicted scores and the ground truth labels and averaging the squared differences over all ex-
amples. The goal is to minimize the MSE to improve the accuracy of the predictions. 

• Pairwise Hinge Loss: Pairwise Hinge Loss is a commonly used loss function for ranking 
problems. TensorFlow ranking is used to optimize the ranking order of items. The loss func-
tion measures the difference between the predicted scores of two items and a margin value. If 
the difference between the scores of two items is larger than the margin value, the loss is 0. 
Otherwise, the loss is the difference between the scores and the margin value. The goal is to 
minimize the pairwise hinge loss to improve the ranking order of items. 

Listwise maximum likelihood estimation (ListMLE) is a loss function for listwise ranking problems. 
In TensorFlow ranking, it is used to optimize the overall ranking order of a list of items. The loss 
function is based on the Maximum Likelihood Estimation (MLE) principle and measures the likeli-
hood of observing the ground truth ranking order. The goal is to maximize the likelihood of observ-
ing the ground truth ranking in order to improve the overall ranking performance. 

RESULTS 
After conducting 18 trials on historical medical treatments, we calculated the NDCG@8 and 
NDCG@3 scores for both the ingredient prediction and medicine prediction models. As outlined in 
the approach section, the k values of 8 and 3 were chosen to represent the average and median num-
ber of ingredients per medicine, respectively. Table 7 presents the NDCG@3 results for each trial 
and a summary of all trials, while Table 8 provides the NDCG@8 results for the same trials. 

Figure 7 illustrates a comparative analysis of the NDCG@8 versus NDCG@3 results across all mod-
els. The results show consistency between NDCG@3 and NDCG@8 scores across the 18 trials, 
with NDCG@8 scores consistently higher than NDCG@3 scores. This is expected, as an increase in 
k allows the algorithm to consider more items in the ranking, potentially leading to a higher score if 
the additional items are relevant to the user. However, if the additional items are irrelevant, the score 
remains unchanged.  

Table 7. The results (NDCG@3) 

Trial 
no. 

Test 
month 

First 
models 

(ingredient 
prediction) 

Second 
models 

(medicines 
prediction) 

Benchmark 
model 

(pointwise) 
mean squared 

loss 

Benchmark 
model 

(pairwise) 
pairwise 

hinge loss 

Benchmark 
model 

(listwise) list 
MLE loss 

1 May-21 88 73 71 72 75 
2 Jun-21 85 72 69 69 71 
3 Jul-21 85 75 74 74 74 
4 Aug-21 88 69 69 69 70 
5 Sep-21 83 65 64 66 66 
6 Oct-21 86 69 71 73 70 
7 Nov-21 85 74 71 74 73 
8 Dec-21 86 76 74 76 76 
9 Jan-22 80 65 66 65 63 
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Trial 
no. 

Test 
month 

First 
models 

(ingredient 
prediction) 

Second 
models 

(medicines 
prediction) 

Benchmark 
model 

(pointwise) 
mean squared 

loss 

Benchmark 
model 

(pairwise) 
pairwise 

hinge loss 

Benchmark 
model 

(listwise) list 
MLE loss 

10 Feb-22 89 75 68 67 62 
11 Mar-22 88 74 69 69 69 
12 Apr-22 86 76 77 72 76 
13 May-22 85 69 66 67 66 
14 Jun-22 83 69 67 68 67 
15 Jul-22 90 78 72 74 72 
16 Aug-22 89 71 73 73 75 
17 Sep-22 87 72 70 71 71 
18 Oct-22 83 58 54 54 55 
Average result 86 71 69 70 70 
Standard 
deviation 

3 4 3 3 4 

Run time 
(minutes) 

00:23 04:22 00:17 00:16 00:14 

 

Table 8. The results (NDCG@8) 

Trial 
no. 

Test  
month 

First 
models  

(ingredients 
prediction) 

Second 
models  

(medicines 
prediction) 

Benchmark 
model 

(pointwise) 
mean squared 

loss 

Benchmark 
model 

(pairwise) 
pairwise 

hinge loss 

Benchmark 
model 

(listwise) 
list MLE 

loss 
1 May-21 92 77 75 77 77 
2 Jun-21 87 74 72 72 72 
3 Jul-21 87 77 76 77 76 
4 Aug-21 90 73 71 71 71 
5 Sep-21 84 66 65 67 68 
6 Oct-21 88 71 72 73 72 
7 Nov-21 87 76 73 75 75 
8 Dec-21 90 80 77 77 79 
9 Jan-22 81 66 68 67 67 
10 Feb-22 91 77 70 69 69 
11 Mar-22 89 75 72 71 71 
12 Apr-22 88 78 79 77 78 
13 May-22 87 71 68 69 69 
14 Jun-22 86 72 69 69 69 
15 Jul-22 92 81 75 76 76 
16 Aug-22 91 75 74 76 77 
17 Sep-22 88 73 73 72 73 
18 Oct-22 85 62 57 58 58 
Average result 88 74 71 72 72 
Standard 
deviation 

3 4 4 4 4 

Run time 
(minutes) 

00:29 04:47 00:21 00:20 00:18 
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Figure 7 illustrates a comparative analysis of the NDCG@8 versus NDCG@3 results across all mod-
els. The results show consistency between NDCG@3 and NDCG@8 scores across the 18 trials, 
with NDCG@8 scores consistently higher than NDCG@3 scores. This is expected, as an increase in 
k allows the algorithm to consider more items in the ranking, potentially leading to a higher score if 
the additional items are relevant to the user. However, if the additional items are irrelevant, the score 
remains unchanged.  

  

Figure 6. Average NDCG@8 vs average NDCG@3 results 

As indicated in Table 8, the average NDCG@8 score across all trials for the ingredient prediction 
model is 88%, with a standard deviation of 3%. For the medicine prediction model, the average 
NDCG@8 score is 74%, with a standard deviation of 4%. These results demonstrate that the models 
are reasonably robust, yielding stable results across different trials. Additionally, our approach outper-
formed the benchmark models by an average of 3% over the pointwise model and 2% over the pair-
wise and listwise models. However, it is noteworthy that the benchmark models outperformed our 
approach in some trials or test months. The benchmark models also exhibited a consistent standard 
deviation of 4%, similar to our approach.  

The improved performance of our models came with the trade-off of longer runtime, averaging 
around 5 hours per trial, compared to approximately 20 minutes per trial for the benchmark models. 
To assess the statistical significance of our results, we conducted a paired two-sample T-test with an 
alpha of 5%. Table 9 presents the significance test results between our approach and the pointwise 
model, Table 10 between our approach and the pairwise model, and Table 11 between our approach 
and the listwise model. The test was conducted over 18 trials, with results evaluated using 
NDCG@8. A two-sample t-test was applied to compare the proposed approach against each of the 
benchmark methods. The findings revealed a statistically significant improvement in performance, 
with p-values of 0.7e-3, 3.5e-3, and 1.2e-2 against the pointwise, pairwise, and listwise approaches, 
respectively. These p-values indicate that the proposed approach outperforms the benchmark meth-
ods in ranking medicines based on disease names, with the difference in performance being statisti-
cally significant. 

Furthermore, the results suggest a reasonable correlation between disease treatments and medicine 
ingredients. Within each ingredient, certain medicines consistently dominate in preference, making 
them more favorable choices for both doctors and insurance companies. This dominance likely ac-
counts for the relatively strong performance in medicine prediction when selecting the medicine with 
the highest predicted probability for each of the top eight predicted ingredients per disease. 
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Table 9. Significance test between our approach and the pointwise model results 

Statistical item 
Medicines 

prediction model 
(proposed approach) 

Benchmark model 
(pointwise) 

Mean Squared Loss 
Mean 73.56 71.44 
Variance 25.08 25.20 
Observations 18 18 
Pearson correlation 89% 

 

Hypothesized mean difference 0 
 

df 17 
 

t Stat 3.77 
 

P(T<=t) one-tail 0.7-3 
 

t Critical one-tail 1.74 
 

P(T<=t) two-tail 1.5-3 
 

t Critical two-tail 2.11 
 

Table 10. Significance test between our approach and the pairwise model results 

Statistical item 
Medicines 

prediction model 
(proposed approach) 

Benchmark model 
(pairwise) 

pairwise hinge loss  
Mean 73.56 71.83 
Variance 25.08 24.5 
Observations 18 18 
Pearson correlation 87% 

 

Hypothesized mean difference 0 
 

df 17 
 

t Stat 2.90 
 

P(T<=t) one-tail 5-3 
 

t Critical one-tail 1.74 
 

P(T<=t) two-tail 9.8-3 
 

t Critical two-tail 2.11 
 

Table 11. Significance test between our approach and the listwise model results 

Statistical item 
Medicines 

prediction model 
(proposed approach) 

Benchmark model 
(listwise) 

list MLE loss 

Mean 73.56 72.06 
Variance 25.08 26.06 
Observations 18 18 
Pearson correlation 87% 

 

Hypothesized mean difference 0 
 

df 17 
 

t Stat 2.45 
 

P(T<=t) one-tail 12-3 
 

t Critical one-tail 1.74 
 

P(T<=t) two-tail 25-3 
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While analyzing the results, variations were observed across the 18 trials. NDCG is a widely used 
evaluation metric in information retrieval and recommendation systems, with scores close to 1 indi-
cating that the system has placed highly relevant items at the top of the list, which is the desired out-
come. However, these variations in reported NDCG results could be attributed to various factors 
that warrant further investigation. 

• Different test sets: The NDCG results may vary if different test sets are used for evaluation, even 
if the same recommendation algorithm is applied. 

• Different parameter settings: The NDCG results may also vary if different parameter settings are 
used for the same algorithm. 

• Different ranking methods: The NDCG results may also differ based on the ranking method 
used, such as the use of different loss functions or different optimization algorithms. 

• Different implementations: The NDCG results can also vary if different implementations of the 
same algorithm are used. 

Since we used similar parameter settings in the 18 trials for the different algorithms and looking into 
the results in the 18 trials, we can see that the variations are due to the difference in the test datasets 
for all models since the trend in results is similar for the 18 trials. For example, test months October 
2022, September 2021, and January 2022 showed the lowest NDCG results for all of them. This con-
firms that the variations are due to test data. 

FINDINGS AND DISCUSSION 
Attempting to predict medicines directly from diseases yielded poor results due to the lack of a 
strong correlation between disease-related features and medicine codes. In our approach, we sought 
to emulate the clinical practice by first identifying the most relevant active ingredients for each dis-
ease. These predicted ingredients were then used in conjunction with disease features to forecast the 
corresponding medicines. This method outperformed direct medicine prediction primarily because it 
incorporated the powerful new feature of the ingredient. 

The model’s performance was influenced by the presence of diseases associated with multiple ingre-
dients and medicines, each with similar usage ratios or probabilities. For example, in certain trials, the 
disease “Pain in throat and chest” (ICD code “R07”) was treated with three ingredients – PARACE-
TAMOL, IBUPROFEN, and HERBAL COUGH SYRUP – each having a usage ratio of 26.3%. 
Similarly, for this disease, two medicines, “JOS-PAN SYRUP (120ML)” and “HELIX COUGH 
SYRUP (125ML),” shared an identical usage ratio of 5.2%. This scenario may lead to arbitrary yet ac-
curate medicine predictions, potentially lowering metric scores, as the model selects only one medi-
cine per disease-ingredient combination and disregards the others. Figure 8 illustrates the number of 
diseases with multiple high-frequency medicines in each trial’s training dataset. 

Another factor impacting the NDCG score is the number of distinct medicines historically used per 
disease. When more medicines are used per disease, the likelihood of the most frequent medicines 
varying between trials increases. For instance, a disease may be treated more frequently with one 
medicine in one month and another in the following month. Analysis of the datasets from the 18 tri-
als revealed that, on average, the most frequent medicine per disease in the test dataset differed from 
that in the training dataset for approximately 24% of the diseases. Figure 9 shows the percentage of 
diseases in the test dataset for which the most frequent medicine differs from that in the training da-
taset. 
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Figure 7. Number of diseases with multiple most frequent medicines per trial 

 
Figure 8. Diseases with different most frequent medicines in test dataset (counts) 

The number of available medicines per ingredient also influences the NDCG score. A higher number 
of medicines for the same ingredient increases the potential for prescription variations, leading to a 
lower NDCG score. Data showed that the average number of medicines per ingredient is around 
nine, with a median of five and a maximum of 52 for the active ingredient “CHOLECALCIFEROL 
(VITAMIN D3).” Figure 10 presents a boxplot showing the distribution of distinct medicine counts 
per ingredient. These findings indicate that medicine prediction models exhibit less stability than in-
gredient prediction models, primarily due to the high variability in medicines containing the same in-
gredient. This variability arises naturally from differences in medicine specifications based on the 
manufacturing company, price, unit type, dosage form, dosage unit, package type, and package size. 

The variability in medicine prediction results across trials can be attributed to several factors. Beyond 
the aforementioned issue of medicine variations, it was observed that the probabilities of ingredient 
and medicine usage for the same diseases fluctuate from month to month. This is especially true for 
rare or low-frequency diseases with few associated ingredients, where one medicine may have a 
higher usage probability in one month and a lower probability in another, resulting in considerable 
deviations in outcomes. Finally, it is worth noting that implementing this model in an insurance com-
pany could potentially reduce medicine-related paid claims by approximately 5%, as this percentage 
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represents the historical waste from unnecessary medications identified through thorough analysis. 
Additionally, automating the medical claims submission process could further reduce expenses. 

 
Figure 9. Distribution of the number 
of distinct medicines per ingredient 

THREATS TO VALIDITY 
A key threat to the validity of this study is the availability and quality of the data features. The analy-
sis relies solely on ICD-9 disease names and their parent categories within the ICD hierarchy for 
ranking medicines. This limited information may not be sufficient to accurately rank medicines based 
on their relevance to specific diseases. Incorporating additional features such as side effects, efficacy, 
and patient preferences could offer a more holistic view of medicine relevance and potentially en-
hance the accuracy of the rankings. Moreover, data quality is another critical factor that could influ-
ence the study’s outcomes. Missing information or data errors could adversely affect the performance 
of the LTR approaches. Therefore, the findings of this study are constrained by the available data 
and should be interpreted with caution. 

The process of ranking a list of available medicines for a patient involves multiple considerations, 
each influencing the final decision to varying degrees. Below is a list of some key factors that may im-
pact medicine selection decisions: the diseases and symptoms diagnosed by the doctors. 

• Patient profiles include age, gender, physical characteristics, and medication tolerance.   
• Patients’ case-specific conditions include the occurrence number of the same disease within a 

specified time frame, possible side effects from certain medications, and existing medical con-
ditions. 

• Medicine characteristics include active ingredients and their strength, efficacy and side effects, 
and drug interaction.  

As previously mentioned, a significant threat to the validity of this study lies in the availability and 
quality of the data features. Our dataset lacks several critical factors, including patient physical char-
acteristics, medication tolerance, existing medical conditions, drug efficacy, side effects, and drug in-
teractions. The absence of these features undoubtedly impacts the ranking performance of both our 
proposed approach and the benchmark approach. Unfortunately, the missing data cannot be re-
trieved, so we have accepted this limitation. 

Another challenge concerns the quality of the available data. Some historical data has been improp-
erly recorded or accumulated at a higher level of granularity, reducing its applicability in data science 
approaches. For example, insurance claim entries often aggregate non-chronic medications under 
broad categories like “local medicine” or “foreign medicine.” Moreover, not all data is captured accu-
rately or completely. Crucial information such as age and body mass index (BMI) is frequently miss-
ing or incorrectly recorded, with missing values ratios of 64%, 43%, and 89% for age, gender, and 
BMI, respectively. 
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Handling missing data is a critical aspect of data preprocessing and can significantly influence ma-
chine learning performance. In our study, the gender, age, and BMI features for patients with specific 
diseases exhibited a high percentage of null values. This is a common issue in real-world datasets and 
may result from data entry errors or incomplete data collection. Several methods exist for handling 
missing data, including imputation and deletion techniques. However, given the high proportion of 
missing values, we opted to exclude the gender, age, and BMI features from our analysis. Imputing 
these values could introduce additional bias and errors into the dataset. Deleting missing values, a 
common approach in machine learning simplifies the analysis and is based on the assumption that 
the missing values are random and not related to the outcome of interest. 

In summary, we decided to exclude the gender, age, and BMI features to ensure the quality and relia-
bility of the data used in this study, acknowledging that this decision reduces the dataset’s size but en-
hances the overall robustness of the analysis. 

CONCLUSION  
Healthcare is a critical domain involving various stakeholders, including insurance companies. Accu-
rate prediction and ranking of potential treatments for each medical case can significantly benefit 
medical providers, medical coders, and insurers by improving treatment decisions and compensation 
processes. 

Using a confidential dataset from an insurance company, we proposed a pointwise ranking approach. 
This approach involved developing a process pipeline that splits the treatment ranking for each dis-
ease into two prediction tasks: first, ingredient prediction, followed by medicine prediction based on 
the predicted ingredients. Our method utilizes deep learning models that handle each label separately, 
with distinct model branches for each label. These models employ regression techniques to predict 
ingredient and medicine probabilities based on historical data. 

To evaluate the robustness of our approach, we conducted 18 trials, treating each monthly cohort of 
treatments as a separate testing period. We compared our results with a benchmark approach from 
the Information Retrieval domain, which uses LibSVM data representation. The benchmark ap-
proach involved running the same number of trials with three LTR algorithms: pointwise, pairwise, 
and listwise. Our approach demonstrated superior performance, achieving an average NDCG@8 
score of 74%, compared to 71%, 72%, and 72% for the pointwise, pairwise, and listwise benchmark 
models, respectively. 

Our method relies solely on historical data from patients’ pharmacy visits, including information on 
diseases, ingredients, and medicines. Consequently, newly introduced medicines do not appear in the 
top-ranked results until they gain prominence over time. Given the continuous evolution of the phar-
maceutical industry, future work should consider incorporating additional features, such as time, 
medicine company profiles, market data, and other relevant factors. 
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