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ABSTRACT 
Aim/Purpose Although the significance of  data provenance has been recognized in a variety 

of  sectors, there is currently no standardized technique or approach for gather-
ing data provenance. The present automated technique mostly employs work-
flow-based strategies. Unfortunately, the majority of  current information sys-
tems do not embrace the strategy, particularly biodiversity information systems 
in which data is acquired by a variety of  persons using a wide range of  equip-
ment, tools, and protocols. 

Background This article presents an automated technique for producing temporal data prov-
enance that is independent of  biodiversity information systems. The approach 
is dependent on the changes in contextual information of  data items. By map-
ping the modifications to a schema, a standardized representation of  data prov-
enance may be created. Consequently, temporal information may be automati-
cally inferred.  
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Methodology The research methodology consists of  three main activities: database event de-
tection, event-schema mapping, and temporal information inference. First, a list 
of  events will be detected from databases. After that, the detected events will be 
mapped to an ontology, so a common representation of  data provenance will 
be obtained. Based on the derived data provenance, rule-based reasoning will be 
automatically used to infer temporal information. Consequently, a temporal 
provenance will be produced. 

Contribution This paper provides a new method for generating data provenance automati-
cally without interfering with the existing biodiversity information system. In 
addition to this, it does not mandate that any information system adheres to any 
particular form. Ontology and the rule-based system as the core components 
of  the solution have been confirmed to be highly valuable in biodiversity sci-
ence. 

Findings Detaching the solution from any biodiversity information system provides 
scalability in the implementation. Based on the evaluation of  a typical biodiver-
sity information system for species traits of  plants, a high number of  temporal 
information can be generated to the highest degree possible. Using rules to en-
code different types of  knowledge provides high flexibility to generate temporal 
information, enabling different temporal-based analyses and reasoning. 

Recommendations  
for Practitioners 

The strategy is based on the contextual information of  data items, yet most in-
formation systems simply save the most recent ones. As a result, in order for 
the solution to function properly, database snapshots must be stored on a fre-
quent basis. Furthermore, a more practical technique for recording changes in 
contextual information would be preferable. 

Recommendations  
for Researchers  

The capability to uniformly represent events using a schema has paved the way 
for automatic inference of  temporal information. Therefore, a richer represen-
tation of  temporal information should be investigated further. Also, this work 
demonstrates that rule-based inference provides flexibility to encode different 
types of  knowledge from experts. Consequently, a variety of  temporal-based 
data analyses and reasoning can be performed. Therefore, it will be better to in-
vestigate multiple domain-oriented knowledge using the solution. 

Impact on Society Using a typical information system to store and manage biodiversity data has 
not prohibited us from generating data provenance. Since there is no restriction 
on the type of  information system, our solution has a high potential to be 
widely adopted. 

Future Research The data analysis of  this work was limited to species traits data. However, there 
are other types of  biodiversity data, including genetic composition, species pop-
ulation, and community composition. In the future, this work will be expanded 
to cover all those types of  biodiversity data. The ultimate goal is to have a 
standard methodology or strategy for collecting provenance from any biodiver-
sity data regardless of  how the data was stored or managed. 

Keywords temporal data provenance, biodiversity, ontology, rule-based reasoning  

INTRODUCTION  
In many Big Data applications, data quality has become a major challenge. Such applications are chal-
lenged by data conflict, incomplete, imprecise, subjective, redundant, biased, or noisy, which could 
lead to confusion or misinformation that will reduce the quality of  produced insights (Wilkinson et 
al., 2016). As the volume of  data is expanding with a promoting diversity of  data types, the need for 
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a way to preserve data quality is accelerating (Pérez et al., 2018). Data reusability, on the other hand, 
is crucial because it allows data to be identified and reused in subsequent investigations (Wilkinson et 
al., 2016). Applying new analytic methods to archived data, alone or in combination with newly col-
lected data, is another leading practice for knowledge discovery and innovation. 

Collecting and evaluating data provenance is an effective way to preserve data quality and enable data 
reusability. Data provenance can be seen as information describing digital data’s production process 
(Herschel et al., 2017). This data includes meta-data on the entities, processes, and people who 
worked on the project. In general, data provenance allows the identification of  a particular data 
source, including analyzing the executed transformation of  the data (Pérez et al., 2018; Stefanowski 
et al., 2017). By analyzing this information, multiple useful knowledge can be extracted that can be 
used for understandability (e.g., to identify how the data was obtained), reproducibility (e.g., to check 
if  a prior result can be confirmed), and quality (e.g., to reveal some quality issues in the data) 
(Herschel et al., 2017). More than that, provenance also can be applied for security/privacy (e.g., to 
protect data against unauthorized access and to ensure data integrity), verification (e.g., to verify the 
trustiness of  the data production process), and repeatability (e.g., to enable to repeat the study) 
(Pérez et al., 2018). 

In biodiversity science, scientists have discovered and documented the world’s biodiversity, typically 
in the form of  digital collections or specimens. To provide an integrative analysis, the collections that 
are available from different sources need to be harmonized and coordinated regarding structure, for-
mat, and annotation (Sansone et al., 2012). To appreciate the diversity of  life and the conditions in 
which it exists on the planet in a reliable and comprehensive manner, one must make appropriate use 
of  a mix of  such collections (Lannom et al., 2020). This circumstance poses certain issues for re-
search infrastructures and data services in terms of  making data discoverable, searchable, interopera-
ble, and reusable, as well as doing so in a manner that makes use of  the help of  machines for greater 
productivity (Weigel et al., 2020). In an effort to standardize and unify biodiversity data, the Essential 
Biodiversity Variables (EBV) were established to capture a minimal number of  criterion variables 
(Kissling, Ahumada, et al., 2018). Furthermore, the EBV manufacturing process should be traceable 
from the result back to the raw data, with the ability to repeat the process and document the data’s 
origin and what has been done with it (Hardisty et al., 2019). 

The concept of  time as an extra dimension of  data provenance is reflected in the concept of  tem-
poral provenance, which is one sort of  provenance. Temporal data provenance depicts the evolution 
of  data provenance over time. It refers to the encoded temporal information in a data provenance 
model, representing time, intervals, or versioning (Beheshti et al., 2012). This temporal representation 
is crucial for representing the development of  a piece of  data with several states through time. More 
than that, temporal representation of  data can be used further for data mining tasks (P. Chen et al., 
2014), for example, pattern generation, finding variants, or discovering more descriptive knowledge 
of  provenance clusters. In this case, logical time can be used to reduce the feature space of  the prov-
enance such that data mining tasks can be performed effectively. This kind of  time-related data is 
crucial for improving search results and the overall information retrieval experience for the end user 
(Alonso et al., 2007). Furthermore, temporal information provides the capability for temporal rea-
soning, for example, for activity recognition (Zhang et al., 2020), learning non-linearly evolving entity 
representations over time (Trivedi et al., 2017), and visual question answering generation (Jang et al., 
2017). 

CHALLENGES AND MOTIVATION 
The source of  biodiversity data is typically divided into three categories: genetic diversity, species di-
versity, and ecosystem diversity. As a basis of  biodiversity monitoring programs worldwide, the EBV 
introduces six commonalities classes: genetic composition, species population, species traits, commu-
nity composition, ecosystem structure, and ecosystem function (Pereira et al., 2013). Due to its broad 
scope, this work is limited to species traits data. Generally, trait data collection will start with raw 
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traits’ measurements through specimen collections, in situ monitoring, or remote sensing (Kissling, 
Walls et al., 2018). After that, the data will be validated through data cleaning and quality control be-
fore being published as trait datasets. The aggregation of  data from numerous sources is fraught with 
difficulties, such as broad heterogeneity in collection and sampling methods, the lack of  individual or 
population level measurements, systematic and temporally contiguous in situ collections, and so 
forth. 

Based on the issues in biodiversity data management stated above, the mechanism for automatically 
collecting such provenances is difficult. It will be hard to physically gather them for several reasons, 
including: 

1) There is a variety of  methods and tools for data collection. Each scientist would use the best 
method and tool available to him/her. 

2) Data collection can be performed by multiple scientists from different groups or institutions. 
Collected data can be stored in separate databases in various formats. Forcing scientists to 
use similar structures of  the database is not practical. 

3) In most cases, temporal information about data collection or processing is not attached to 
the data itself. Instead, this information resides in the data storage or management system, 
such as a Biodiversity Information System (BIS). 

With these constraints in mind, data provenance may be gathered in a decentralized way. A credible 
reference to digital biodiversity data enables decentralized archiving and data sharing, allowing for 
long-term data accessibility (Elliott et al., 2020). In this regard, when integrating data from multiple 
BISs, the overall quality of  the integrated data will be determined by data provenance collected from 
every BIS. 

RESEARCH SCOPE 
This work introduces a solution to automatically collect temporal data provenance from distributed 
BISs. The solution can be integrated into databases maintained by a generic BIS. It combines three 
methods: event detection from databases, a uniform representation of  events through an ontology, 
and automatic temporal information inference through a rule-based inference engine. Since collecting 
provenance remains lacking a standard model or a roadmap (Sarikhani & Wendelborn, 2018), the 
scope of  this work is limited to the generation of  temporal data provenance from generic databases 
maintained by BISs. The main research question is to what extent the database events and their uni-
form representation contribute to the automatic generation of  temporal provenance.  

The rest of  the paper is organized as follows: a few related works will be listed and discussed in the 
Literature Review section, followed by a detailed explanation of  the proposed solution in the Com-
putational Approach section and how it was implemented in the Implementation section. After de-
scribing the performed experiment in the section, the Results and Findings will be discussed. Finally, 
a few conclusions and limitations, as well as future works of  this study, will be clarified in the Conclu-
sions section. 

LITERATURE REVIEW 
This section discusses the two most relevant automatic data provenance capturing mechanisms: 
workflow-based and templated-based. After listing and discussing related works from each mecha-
nism, the research gaps will be outlined and discussed at the end of  this section. 

WORKFLOW-BASED PROVENANCE CAPTURE 
In general, there are three sorts of  provenance capture mechanisms: workflow-based, process-based, 
and operating system-based (De Meester et al., 2017). The workflow-based capture mechanisms are 
widely used because they provide a simple programming model that allows a sequence of  tasks to be 
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composed by connecting one task’s outputs to the inputs. In this case, the provenance can be gener-
ated automatically based on functions or processes performed on a fraction of  the data.  

The workflow-based capture mechanisms are highly achievable in specific architecture and controlled 
environments, where automatic capturing can be performed in the background of  a workflow system 
(Weigel et al., 2020). Capturing provenance from such systems requires a model of  provenance 
(Sarikhani & Wendelborn, 2018). The model should cover several characteristics of  provenance cap-
ture techniques such as workflow orientation, collecting stages, degree of  abstraction, retrospective 
and prospective, granularity, accessibility, architectural layers, coupling strategy, and time and kind of  
instrumentations. As an example, data transformation workflows that are based on MapReduce (a 
distributed programming model for processing large data sets by applying maps and reducing proce-
dures in parallel) tasks can be used as a platform for provenance capture in this specific architecture 
(Stefanowski et al., 2017; Wang et al., 2015).  

Computational experiment workflows are another setting that may be utilized as a platform for prov-
enance capture. With the advent of  scientific workflow management systems, provenance can be au-
tomatically captured and stored during data production and consumption within a given scientific ex-
periment (Oliveira et al., 2018). For example, different components for efficient data processing tied 
together in a computational bioinformatics workflow can be used to track multiple transformations 
performed on the data (Kanwal et al., 2017).  

Furthermore, workflow-based provenance capture mechanisms have also been developed based on a 
specific computing platform; for example, Apache Spark (Guedes et al., 2020; Rajmohan et al., 2019), 
interactive notebooks (Carvalho et al., 2017), and a specific workflow management system for parti-
cle-based simulations (Horsch et al., 2020). 

TEMPLATE-BASED PROVENANCE CAPTURE 
A model-driven service interface, so-called provenance templates, can be utilized to automatically 
capture data provenance. Provenance templates may be seen as abstractions with domain meaning 
that can be readily translated to the activities of  client software tools (Curcin et al., 2017). Practically, 
a template will be represented as a graph that consists of  specific entities (as a representation of  
states of  the data), specific activities that produce and consume such entities, and particular agents 
associated in some capacity with entities or activities. Every time new data is created, the relevant 
template will be consulted to ensure its validity. Implementing a decision support system in the health 
domain has shown potential for integrating trust into computerized systems, enabling transparency 
and auditability (Curcin et al., 2017). In software engineering, a template-based provenance capture 
mechanism can also be implemented by mapping the structural diagrams of  designed applications 
into provenance templates (Sáenz-Adán et al., 2018). Furthermore, a service for uploading and dis-
seminating provenance templates has been established in the field of  environmental and earth sci-
ences, which can be used to build uniform provenance traces from input data in accordance with 
standards (Magagna et al., 2020). 

RESEARCH GAP 
Provenance meta-data, information system provenance, workflow provenance, and data provenance 
are a few examples of  provenances that may be collected (Herschel et al., 2017). Data provenance is 
the most precise sort of  provenance, and it pertains to the particular data pieces and the actions they 
go through. Most of  the existing provenance capture mechanisms discussed in the previous sub-sec-
tions rely mainly on the functions or processes performed on a fraction of  data. However, functions 
and processes can vary from one case to another; therefore, having one generic architecture to facili-
tate an automatic generation of  provenance will be challenging. Furthermore, most of  those func-
tions and processes are performed on a collection of  data, not at the individual level of  item data. As 
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a consequence, workflow-based and template-based mechanisms produce coarse-grained data prove-
nance granularity. 

COMPUTATIONAL APPROACH 
In this section, the computational strategy for automatically producing the temporal provenance of  
biodiversity data is presented. First, the procedural architecture of  this study is outlined, followed by 
the three primary actions that contributed to the proposed solution. 

PROCEDURAL ARCHITECTURE 
Figure 1 shows the procedural architecture of  this work to transform biodiversity databases as input 
to temporal provenance as output. It consists of  three main activities: database event detection, 
event-schema mapping, and temporal information inference. First, a list of  events will be detected 
from the databases, typically maintained by biodiversity information systems. Second, the detected 
events will be mapped to an ontology, so a common representation of  data provenance will be ob-
tained. Third, based on the obtained data provenance, rule-based reasoning will automatically be ap-
plied to infer temporal information. As a result, a temporal provenance will be generated.  

 
Figure 1. The procedural architecture 

As a combination of  three methods, the solution takes advantage of  each method from event detec-
tion methods that have been successfully applied in various applications. An event is a noteworthy, 
out-of-the-ordinary occurrence of  action compared to typical patterns of  conduct (Kerman et al., 
2009). In this situation, examining the system’s statuses may help with event detection. Statistical, 
probabilistic, artificial intelligence, machine learning, and hybrid approaches are some of  the event 
detection methods. The value of  specified parameters that exceed a threshold value, which may be 
established based on past parameter values, is monitored using a statistical approach. The likelihood 
of  an event occurring and other relevant factors are computed using a probabilistic technique. On 
the other hand, AI and machine learning methods work by modeling the system based on data train-
ing. Furthermore, it is also possible to combine those techniques. 

Further, a uniform representation of  data through an ontology – shared, explicit and formal concep-
tualizations of  a domain (Gruber, 1995) – has been widely used to guarantee consistency among mul-
tiple systems. Multiple systems are able to interact with one another regarding a domain of  discourse 
when they use a common ontology rather than having to necessarily operate on a universally shared 
theory. Furthermore, data inference through rules would automatically generate temporal infor-
mation. As a kind of  knowledge representation, rules may take several forms, including reactive rules, 
which include the invocation of  actions in response to events and actionable circumstances (Paschke 
& Kozlenkov, 2009). Production rules, for example, typically represented in the IF Condition THEN 
Action format can derive new data as action whenever a particular condition is fulfilled. 

The proposed solution combines the advantages of  each method as follows: 

1) Multiple sources of  events can be uniformly represented across multiple systems by using a 
common ontology. 
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2) Multiple mapping can be performed without changing the ontology by using a mapping 
mechanism. In this case, the solution should be scalable very well. This benefits biodiversity 
data collection where methods, tools, and databases vary. 

3) A piece of  new information can be inferred automatically based on the current situation us-
ing reactive rules. Therefore, generating temporal provenance can be performed automati-
cally. 

4) A combination of  three methods would automatically enable provenance collection mecha-
nisms. 

In the next subsections, the three primary phases of  the solution will be discussed in depth. 

DATABASE EVENT DETECTION 
There are two essential components of  provenance (Freire et al., 2008): 

1) The process description (or series of  procedures) that, in conjunction with input data and 
parameters, led to the generation of  the data product. 

2) User-defined documentation of  information. It is not automatically collected, but key 
choices and notes are recorded. This information is often presented as annotations. 

Typically, the sequences of  lines of  the data generation process are described according to where the 
data were copied from (e.g., what characteristics of  which tuples), why the data was created (based on 
what source data), and how the data were changed (to produce the result) (Herschel et al., 2017). The 
proposed event detection method relies on data items available in transactional databases.  

Definition 3.1 (Data Items). A data item is the smallest representation of  data, represented as triple (𝑘𝑘, 
𝑣𝑣, 𝑙𝑙), where 𝑘𝑘 is key, 𝑣𝑣 for value, and 𝑙𝑙 for the label. 

Definition 3.2 (Contextual Information). Contextual information is the identity of  things that gives con-
text to data. For example, an identity about the person who performs certain actions to the data or an 
identity about when the data was created or modified. 

 
Figure 2. Combine data and contextual information 

The suggested method focused on biodiversity information systems, in which various linked data 
points for producing provenance were removed from the data. For instance, contextual information 
on the individual who modified the data and the time of  the update was maintained in another data-
base. In order for this technique of  generic data storage to function, the data and contextual infor-
mation are integrated, with the mechanism for event detection relying on this combination. Figure 2 
depicts how data items are combined with contextual information for authorship (a) and for tem-
poral (t). Every member of  a data item triple (the white box) can be combined with this two contex-
tual information, such that key, value, and label are contextually represented as (k, a,t), (v, a,t), (l, a,t) 
respectively (gray boxes). Further, this three contextual information can be combined further to gen-
erate another two contextual information (green boxes) that are represented as (k,v, a,t), (k,l, a,t). 
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To illustrate the combination process, let’s take, for example, an item data as follow: isLeaf(x) ˄ has-
Color(x, green). Adding an authorship context to the data would produce something like isLeaf(x) ˄ has-
Color(x, green) ˄ hasAuthor(A) to indicate that authorA declared that the color of  the leaf  was green. 
When another author amends the fact, we will have another fact to indicate what parts of  the data 
were changed and who was responsible for the change. For instance, isLeaf(x) ˄ hasColor(x, yellow) ˄ 
hasAuthor(B) to indicate that author B has declared that the color of  the leaf  is yellow. To this point, 
we can distinguish the data modification and the person responsible for the modification. However, 
we still miss which one is declared first, second, and so on. Therefore, temporal contextual infor-
mation would enable us to do that. In this case, adding the temporal as follow: isLeaf(x) ˄ hasColor(x, 
yellow) ˄ hasAuthor(B) ˄ hasTime(C) to indicate that the fact was declared by author B on time C. 

As stated in the Introduction section, the target of  this study is generic biodiversity information sys-
tems. Minimal contextual information is present in such systems. In most instances, the system just 
maintains the most recent authorship and temporal context information. Consequently, after inte-
grating the data and its contextual information, as previously described, the event detection approach 
will determine whether any contextual information has changed. If  a change is detected, it will fur-
ther detect whether the authorship, temporal, or both contexts were changed. Based on this detec-
tion, a set of  relevant attributes (key-value pairs) will be generated to be mapped further with the 
common ontology. The key-value pairs can be stored in any format (for example, XML, CSV, JSON), 
which the mapping engine consumes. These key-value pairs bridge the databases and the mapping 
where only necessary events will be detected. It is not required to map the database directly to a 
schema because the solution needs to identify different kinds of  activities. Instead, the identification 
will be performed by the event detection process. 

EVENT-SCHEMA MAPPING 
A schema mapping process aims to align an item from one schema to a relevant item in another 
schema. In general, the objective of  mapping is to align data from numerous schemas to a common 
schema in order to produce a coherent representation of  the data. The alignment is typically defined 
through mapping rules that map item data and required data transformation. 

There are several widely used common representations for data provenance, including the Open 
Provenance Model (OPM) (Moreau et al., 2011) and PROV-O (https://www.w3.org/TR/prov-o/). 
The OPM characterizes what caused “things” through nodes of  a directed graph. Three kinds of  
nodes are Artifact, Process, and Agent. An artifact represents an immutable piece of  the state of  a 
digital representation. A process represents an action or series of  actions performed on or caused by 
artifacts. An agent represents the entity that performs a process. Since 2013, the W3C has proposed 
PROV-O as another standard format for data provenance. It presents three fundamental classes: En-
tity, Activity, and Agent. A physical, digital, or other item is an entity. An activity is anything that takes 
place throughout time and has an effect on entities. An agent is anything that bears responsibility for 
the occurrence of  an action. 

In this study, PROV-O is employed as the standard data provenance form for biodiversity data. In 
this situation, an action may include consuming, processing, converting, altering, transporting, using, 
or producing biological specimen entities. As noted in the Introduction section, the scattered nature 
of  data collecting posed challenges. Multiple individuals are producing various measurements from 
the same specimen. An individual measures and collects different characteristics from the specimens 
using different measurements or types of  equipment or protocols. It is the responsibility of  every in-
dividual to enter obtained data into a database. Representing these activities using PROV-O cannot 
be performed straightforwardly for several reasons. First, multiple individuals are working on the 
same specimen; therefore, it is necessary to ensure the entity of  those multiple activities refers to the 
same object. Next, when entering data into the database, the order of  data is unknown since each in-
dividual could enter data at any time. The solution overcomes these situations with a flexible schema 
mapping approach through mapping rules in the form of  RML (Dimou et al., 2014). 

https://www.w3.org/TR/prov-o/
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TEMPORAL INFORMATION INFERENCE 
In this study, the automatic generation of  temporal information is implemented using rule-based rea-
soning. Rules are a kind of  knowledge representation that may express deductive information, such 
as logical connections, and so facilitate inference (Chowdhary, 2020). Due to its simplicity in codify-
ing the knowledge of  human experts, rule-based reasoning systems have been widely used in various 
knowledge-intensive expert systems. For example, a rule-based system has been used for legal reason-
ing (Liu et al., 2021), safety assessment (Tang et al., 2020), emergency management (Jain et al., 2021), 
and online communication (Akbar et al., 2014). Specifically, in the biodiversity research area, rule-
based systems are also widely used, for example, for predicting the impact of  land-use changes on 
biodiversity (Scolozzi & Geneletti, 2011), molecular biodiversity database management (Pannarale et 
al., 2012), or for generating linked biodiversity data (Akbar et al., 2020). 

 

 
 

(a) Asserted relationships (b) Inferred causality 
relationship 

(c) Inferred temporal 
relationships 

Figure 3. Asserted and inferred relationships 

Figure 3 shows the capability of  the schema to infer causality and temporal relationships. Triangles, 
circles, and squares represent activities, entities, and agents. By using facts that are explicitly defined 
(as shown in Figure 3a), it will infer more information based on causality (Figure 3b) and time (Figure 
3c) relationships. For causality relationships, it will be able to define if  an entity was derived from an-
other entity and if  it was defined by using a specific activity. Further, for time relationships, it will be 
possible to determine if  an activity happened before another activity and if  an entity was generated 
before another entity. 

This work adopts the Semantic Web Rule Language (SWRL) (Horrocks et al., 2004) to codify the 
rules into an inference engine. The language supports interoperability on multiple systems on the 
web (O’Connor et al., 2005). Furthermore, it has been successfully integrated with domain ontology 
in various use cases; for example, for anti-diabetic drug selection (R.-C. Chen et al., 2012), underwa-
ter robots (Zhai et al., 2018), as well as integrated product design (Abadi et al., 2018). 

IMPLEMENTATION 
This section presents the suggested solution’s implementation prototype. How the intended biodiver-
sity data were gathered and maintained in a database is described first, followed by how event detec-
tion, mapping, and temporal inference were implemented. 

The data was collected from Lensa, a website portal for disseminating the characteristics of  natural 
fiber extracted from various plants in Indonesia. The portal collects various natural fiber characteris-
tics that are measured or extracted from plants. Multiple groups of  scientists collected the character-
istics using different kinds of  scientific instruments. Specimens from different parts of  sampled 
plants will be distributed to different laboratories, where a unique identification number will be as-
signed to each sample. Following that, each laboratory examines the received sample further and en-
ters the findings into the database. It is impossible to predict which analysis will be entered first. The 
portal was built using a generic content management system where data is stored in a MariaDB data-
base server. 
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Figure 4. The integrated user interface for data collection 

Figure 4 depicts the integrated user interface for data collection, which was used to gather several 
kinds of  measurable attributes. Fields and specimens are the two forms of  data that are required. 
Field data contains the value for a single feature, but specimen data has a collection of  fields that de-
fine the essential qualities of  a given specimen. The portal also stored the time when a specimen or 
field was created and updated. The updated time refers to the last update performed on the specimen 
or field. Further, it stored the author who created or updated the relevant specimen or field. For anal-
ysis, the time and the author information were used as the authorship and temporal contexts, respec-
tively. 

To detect multiple events, multiple queries were performed on the database using Structured Query 
Language (SQL) to capture the current situation of  contextual information for every field and speci-
men, as shown in Table 1. In this example, the queries will collect the identification number (id), au-
thor (post_author), date when the data item was created (post_date), and when it was modified (post_mod-
ified) for field and specimen data, respectively. Such queries are performed regularly to capture modi-
fications to contextual information over time. A contextual changed event is detected whenever one 
of  the following conditions is fulfilled:  

1. The value of  the “post_modified” attribute is different from the value of  the “post_date” 
attribute from the current query 

2. The value of  the “post_modified” attribute is different from the value of  the “post_modi-
fied” attribute from the last query 

Table 1. Example of  queries to a database 

No. Query 
1 SELECT ID, post_author, post_date, post_modified FROM `wpw0_posts` WHERE 

post_type = 'field' AND post_status = 'publish' 
2 SELECT ID, post_author, post_date, post_modified FROM `wpw0_posts` WHERE 

post_type = 'specimen' AND post_status = 'publish' 

As a result, all collected information for every detected event will be exported as a Comma-Separated 
Values (CSV) file to be processed further. 
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A uniform schema is required to represent collected contextual information from the event detection 
method explained above. As mentioned in the Computational Approach section, PROV-O was used 
as the base for the provenance schema, combined with Schema.org (https://schema.org/) vocabu-
lary and Temporal Provenance Model (TPM) (Beheshti et al., 2012). It is also required to define rules 
to infer the temporal data provenance automatically. The schema and rules will be defined using the 
Protégé Editor (Musen, 2015) with pellet reasoner (Sirin et al., 2007), supporting SWRL as shown in 
Figure 5. 

 
Figure 5. Schema definition using the Protégé Editor 

Following that, mapping rules that match the information of  detected events to the established 
schema will be generated to provide associated data provenance for all event participants. The map-
ping rules were defined using a declarative rules language called RML (https://rml.io/), where a rule 
will be used to align data fields/columns from the generated CSV files to the schema. Furthermore, 
RMLMapper (https://github.com/RMLio/rmlmapper-java) was utilized to execute the produced 
RML rules. As a result, relevant triples (subject-predicate-object) of  data provenance in the form of  
Resource Description Framework (RDF) (https://www.w3.org/TR/rdf11-concepts/) were gener-
ated.  

Finally, all generated triples of  individual data were loaded into the Protégé Editor with the defined 
schema and specified inference rules. The selected reasoner is then executed such that a few new data 
items were successfully inferred as the temporal data provenance. These steps need to be performed 
regularly to capture the history of  temporal data provenance over time. 

METHODS 
This section details the performed experiment for automatically producing temporal data provenance 
using the suggested solution. First, data from a standard biodiversity information system was col-
lected. After that, a data provenance schema was built, and mapping rules were established. Finally, a 
rule engine automatically performed the temporal provenance generation using several defined infer-
ence rules. 

https://schema.org/
https://rml.io/
https://github.com/RMLio/rmlmapper-java
https://www.w3.org/TR/rdf11-concepts/
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                 (a) The distribution of data fields       (b) The distribution of data specimens                     

(based on plants’ characteristics)                 (based on plants’ genus) 

Figure 6. The distribution of data fields and specimens in the dataset 

DATASET 
The database of  Lensa consists of  multiple types of  natural fiber characteristics, including Plant 
Anatomy, Morphology, Spectroscopy, DNA Barcode, Physics and Mechanics, Chemistry, and Plant 
Taxonomy. It was chosen as the source of  the dataset for this study due to a few reasons. First, the 
database was constructed using a generic information system which is the main target of  this study. 
Second, most data records in the database have received multiple updates, representing the data 
changes over time to be extracted as the temporal data for this study. 

Figure 6a shows the distribution of  fields in the dataset. There are 67 fields in total, distributed in 8 
groups of  fiber characteristics. The number of  fields ranges from 2 to 20, where most of  the fields 
belong to the group of  Morphology (36%), followed by Plant Taxonomy (15%), Chemistry (15%), 
DNA Barcode (12%), and so on. Furthermore, the distribution of  specimens in the dataset is shown 
in Figure 6b. Most of  the specimens (47%) fall into the plant genus of  Musa, followed by Abaka 
(14%), Boehmeria (7%), Gigantochloa (7%), and so on. 

 
Figure 7. Data provenance schema for biodiversity data 

DATA PROVENANCE SCHEMA 
Figure 7 shows the constructed data provenance schema. It consists of  four classes of  PROV-O, 
namely “Activity,” “Entity,” and “Person,” which is a sub-class of  “Agent.” As indicated in Table 2, a 
variety of  objects and data characteristics have been utilized. 
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Table 2. The properties of  the data provenance schema 

No. Property Vocabulary Notes 
1 used PROV-O  
2 generated PROV-O  
3 wasAssociatedWith PROV-O  
4 wasDerivedFrom PROV-O  
5 name Schema.org  
6 email Schema.org  
7 url Schema.org  
8 happenedBefore TPM  
9 happenedAfter - Inverse of  happenedBefore 
10 generatedBefore -  
11 generatedAfter - Inverse of  generatedBefore 

 

The schema describes how data items of  specimens and fields were produced or altered over time. 
An activity may use a field or specimen and generate a field or specimen that is related. Moreover, the 
time at which a field or specimen was generated or modified must be indicated. Additionally, each ac-
tion is connected with the individual who conducted the activity. Even though the schema is heavily 
focused on specific use cases, it has the capability to capture the most important aspect of  data prov-
enance, namely the data production history. In addition, four object attributes are supplied to indicate 
temporal information, such as how actions were executed or entities were created. 

EVENT-SCHEMA MAPPING 
A mapping rule aligns each detected event with the specified schema and generates provenances for 
all persons involved in the event. Figure 8a displays an illustration of  a mapping rule. In this example, 
the triple subject is a blank node belonging to the “Activity” class. The triple predicate will be a prop-
erty “wasAssociatedWith” which relates the activity with an “Agent,” in our case, a person. A second 
relationship “generated” will relate the activity with an “Entity,” in our case, a field or specimen. Fig-
ure 8b shows a snapshot of  the generated RDF. It depicts an activity that was performed by a person 
(identified by <http://lipi.go.id/user/4>) that used an entity (identified by <http://lipi.go.id/speci-
men/582/0>) and generated another entity (identified by <http://lipi.go.id/specimen/582/1>).  

 
 

Figure 8. An example of  a mapping rule and its results 
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RULES-BASED INFERENCE 
As mentioned in the Computational Approach section, temporal information is automatically in-
ferred using a rule-based reasoning approach, where rules were codified using SWRL. Table 3 shows 
rules to infer causality and temporal relationships. The first rule depicts that if  an activity has used an 
entity e1 and generated an entity e2, it is possible to infer that e2 was derived from the entity e1. The 
second rule depicts the same condition as the first rule but with a different consequence: e1 was gen-
erated before e2. The third rule will use the new information generated by the second rule (determine 
which entity was generated first) and infer which activity happened first. 

Table 3. Rules to infer causality and temporal relationships 
No. Rules 
1 prov:Activity(?a) ∧ prov:used(?a, ?e1) ∧ prov:generated(?a, ?e2)  

→ prov:wasDerivedFrom(?e2, ?e1) 
2 prov:Activity(?a) ∧ prov:used(?a, ?e1) ∧ prov:generated(?a, ?e2) 

→ bioprov:generatedBefore(?e1, ?e2) 
3 bioprov:generatedBefore(?e1, ?e2) ∧ prov:generated(?a1, ?e1) ∧ prov:used(?a2, ?e1)  

→ bioprov:happenedBefore(?a1, ?a2) 
 

RESULTS AND FINDINGS 
The outcomes of  the conducted experiments and discoveries are presented in this section. First, how 
the event detection and schema mapping solution works are described. After that, how to produce 
the temporal data is explained before moving on to the discussion of  data analysis and results. 

EVENT DETECTION  AND MAPPING 
Two performance analyses were performed on the event detection solution: how the temporal con-
text was updated until a point in time and within a period. In the first analysis, the time interval be-
tween the last update of  a field or a specimen to its creation was computed for every detected modi-
fication. The interval represents how long a field or a specimen received updates. The analysis was 
performed on a snapshot of  the database captured on 26/8/2021, consisting of  95 fields and 56 
specimens. Figure 9a and Figure 9b show the findings of  the data modification analysis for fields and 
specimens, respectively. We found that 86% of  fields were never updated once they were created. 
Further, 13 data modification events were detected where only 2% of  fields have received at least one 
update and were performed within the first month since its creation. On the other hand, all speci-
mens received at least one update over time. 61% of  specimens were updated within four months 
after their creation, and only 7% were updated within 2-5 weeks after their creation. 

  
(a) Detected events from data of fields  (b) Detected events from data of specimens 

Figure 9. Detected events from data fields and specimens (until August 2021) 
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For the second analysis, two database snapshots were captured at two different times, on 26/8/2021, 
and 25/11/2021. Then, the captured snapshots were compared where any modification on the last 
update will be detected for every field or specimen. Once again, computed the time interval between 
the last update on every field or specimen from both snapshots. The results are shown in Figure 10a 
for fields and Figure 10b for specimens. In total, 25 cases of  data alteration of  fields were identified, 
and almost every specimen was altered. While 40% of  field data modifications occurred in the first 
month, the majority of  specimen updates did not occur until the second month. Seven specimens, 
for instance, were updated three months later, while a field was updated nine months later. Notably, 
any newly added fields or specimens over this period were also detected. Four fields were discovered 
to have been added, while one was removed. There was no addition or deletion observed for the 
specimens. 

 
(a) Detected events from data of fields  (b) Detected events from data of specimens 

Figure 10. Detected events from data fields and specimens (August-November 2021) 

Both cases demonstrated how multiple data modification events could be detected using contextual 
information. However, apart from the cases, events are scattered over some time. This fact indicates 
that it is crucial to separate event detection from schema mapping to provide scalability in the imple-
mentation. Furthermore, each event has different situations concerning data provenance and should 
be standardized. The data provenance can be uniformly represented as a standardized data model 
RDF by mapping all related information to a schema. Table 4 shows the number of  triples of  RDF 
produced from the database snapshot on 25/11/2021. In total, more than 300 activities were ex-
tracted successfully, which were performed by 16 persons. 

Table 4. Total number of triples of produced data provenance (status on 25/11/2021) 

No. URI #Triples 

1 http://www.w3.org/ns/prov#Activity 308 

2 http://www.w3.org/ns/prov#Entity 308 

3 http://www.w3.org/ns/prov#Person 16 

4 http://www.w3.org/ns/prov#generatedAtTime 308 

5 http://www.w3.org/ns/prov#generated 308 

6 http://www.w3.org/ns/prov#wasAssociatedWith 308 

7 http://www.w3.org/ns/prov#used 154 

8 http://schema.org/email 16 

9 http://schema.org/name 16 

10 http://schema.org/url 1 
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INFERRED TEMPORAL DATA PROVENANCE 
Ultimately, the performance of  the proposed solution can be determined by comparing the number 
of  inferred data provenance triples produced to the original (asserted) ones. Given the number of  
asserted triples as 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and the total number of  triples (i.e., asserted plus inferred) as 
𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , then the performance was computed as the percentage change of  the number 

of  triples using the following formula: 
𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
× 100 %  

To illustrate the performance computation process, a data record from the dataset is selected ran-
domly as an example. Then, the number of  triples produced before and after the reasoner is activated 
can be compared using the Protégé Editor. The comparison result is shown in Figure 11. This figure 
referred to information defined explicitly (indicated as asserted) and implicit information (indicated 
as inferred). From three entities (entity/582-0, entity/582-1, entity/582-2) and three activities (activ-
ity/0, activity/1, activity/2), the number of  triples produced has increased by 66% to 300% (172% 
on average) when a reasoner is activated (asserted + inferred).  

 
Figure 11. An example of  comparing the number of triples 

produced without and with an inference engine 

 
Figure 12. The comparison of  the number of  triples 

produced on the dataset, without and with an inference engine 
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Finally, the solution’s performance on the dataset was computed using two database snapshots, cap-
tured on 26/8/2021, and 25/11/2021. The results are shown in Figure 12 for both data fields and 
specimens. The solution increased the number of  triples produced by 133% and 45% for entities and 
activities, respectively, from data fields. Furthermore, it produced an increase in the number of  triples 
by 264% and 74% for entities and activities, respectively, from data specimens. Most of  the automati-
cally generated (inferred) triples are about temporal information. Mixing the inference capability of  
both ontology and rules has enabled us to automatically generate richer information, especially tem-
poral information. 

DISCUSSION 
The separation between database event detection, event-schema mapping, and temporal information 
inference has provided flexibility and scalability for implementation. It can be implemented on differ-
ent schema and multiple data modification events with minimum effort. Moreover, mapping rules, as 
well as inference rules, can be defined effectively by using standardized languages. 

From the implementation of  data of  natural fiber characteristics collected by Lensa, a few issues can 
be discussed as follow: 

1) The proposed solution has enabled an automatic extraction of  temporal data provenance 
from a biodiversity database maintained by a typical information system. Since most of  the 
existing biodiversity databases are maintained using generic content management systems, 
the solution is expected to receive wide adoption. Moreover, multiple personnel may under-
take the data gathering process; capturing the provenance at the individual data level is vital, 
particularly when the same specimen is processed with various equipment, tools, or proto-
cols. 

2) In most databases, only the last updated contextual information will be stored. Therefore, it 
is crucial to ensure that this extraction approach will be executed regularly, for example, daily. 
When the rate of  data modifications increases, the approach should be executed directly af-
ter new data is inserted or after existing data is updated. A real-time provenance extraction 
captures fine-grained data production processes. 

3) Once all events are collected, mapping rules definition can be declared. However, finding a 
mechanism to identify the various versions of  an entity remains challenging. For example, 
when an entity has been modified several times, it will generate several entities with similar 
identification. Therefore, when an entity is referred, it must be identified which version was 
referred. One straightforward solution is to use different identification for every version of  
the entity, but a better solution should be achievable. 

4) Even though the event detection and schema mapping were decoupled, there is no standard-
ized format for the output from the event detection yet. In the current implementation, the 
person who creates the mapping rules should also be familiar with the event detection out-
put. Therefore, a subsequent work is to standardize the event detection output, for example, 
through a common representation such as ontology. This way, schema mapping will be more 
convenient through an ontology mapping or alignment approach. 

5) By using rules, various types of  temporal information can be inferred. It provides flexibility 
and modularity to encode different types of  knowledge from experts, where different tem-
poral-based data analyses and reasoning can be performed. 

This study has established the capability of  automating the generation of  temporal data provenances. 
Even though it was built in the biodiversity domain, it has the capability to be deployed in other do-
mains with comparable use cases. In addition to its potential, this study reveals various future en-
hancement alternatives. 

The comparison of  the obtained results to existing relevant studies can be described as follows: 
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1) As demonstrated in the previous sub-section, the proposed solution produced a fine-grained 
provenance granularity up to the individual level of  data items with several limitations. By 
using multiple snapshots of  the database, richer provenance can be obtained. Compared 
with workflow-based and template-based solutions, the proposed solution fills the gap by 
providing more detailed provenance information. The workflow-based solutions rely on spe-
cific architectures and controlled environments to capture data provenance in the back-
ground (Weigel et al., 2020). For example, such solutions can be applied to a specific archi-
tecture (Stefanowski et al., 2017; Wang et al., 2015) or within a given scientific experiment 
(Oliveira et al., 2018), or on a specific computing platform (Carvalho et al., 2017; Guedes et 
al., 2020; Rajmohan et al., 2019) or a specific workflow management system (Horsch et al., 
2020). Similar to workflow-based solutions, template-based solutions, which rely on the defi-
nition of  provenance templates, are highly domain-specific. Therefore, such solutions per-
fectly fit in well-defined domains such as health (Curcin et al., 2017), software engineering 
(Sáenz-Adán et al., 2018), and environmental and earth sciences (Magagna et al., 2020). 

2) The separation of  ontology and event detection provides scalability. This aspect is essential 
in Big Data because multiple users collect and manage data with various methods, tools, and 
protocols. 

3) The integration between ontology-based and rule-based reasoning systems maximizes the 
generation of  multiple types of  causality and temporal information. The solution takes ad-
vantage of  the reasoning capabilities of  both systems. 

4) To answer the research question, based on the provenance hierarchy (Herschel et al., 2017), 
the solution which relies on the separation of  event detection and provenance generation 
has reached the highest degree possible, where provenance can be generated at the most ele-
mentary level of  data. In contrast, the existing solutions, mainly based on workflow and tem-
plate, would only generate data provenance up to the workflow provenance level. 

CONCLUSION 
Data provenance provides data accountability by providing details about the data’s production pro-
cess. It includes the data source and any transformations conducted on the data, as well as the con-
tributor (organization, person, or software) to the process. Especially when reusing data from multi-
ple sources, provenance fulfilled the needs for data auditing, authenticity checking, and quality 
measures in data. Temporal data provenance encodes temporal information in data provenance such 
that more advanced temporal reasoning or analysis can be performed. In the field of  biodiversity, it 
remains challenging to provide provenance during data collection, especially on the level of  individ-
ual traits, where data provenance is rarely documented. 

This study presents an automatic solution for generating temporal data provenance from biodiversity 
databases. The solution aims to eliminate the arduous effort required to collect provenance manually. 
Three processes comprise the solution: database event detection, unification of  provenance represen-
tation through schema mapping, and temporal information inference. The solution separates the op-
erations of  event detection and provenance creation. The separation allows for the flexible alignment 
of  observed events into a shared representation of  provenance using a defined mapping strategy. 
The separation enables the solution to be integrated into most of  the generic biodiversity infor-
mation systems. When integrating with a new biodiversity information system, just the database event 
detection procedure must be modified; all other procedures may stay unchanged. Multiple databases 
with varying formats, semantics, and values have been established, therefore, the proposed solution is 
well suited to the present circumstance. 

In the current implementation, a data provenance schema was constructed by adopting entities and 
properties from several schema or vocabularies, namely PROV-O, Schema.org, and Temporal Prove-
nance Model. After that, a rule-based reasoning system was utilized to infer causality and temporal 
relationships. As a result, the solution mixes the reasoning capability of  ontology and a rule-based 
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system. The solution was evaluated with data collection of  characteristics of  natural fiber of  plants in 
Indonesia. In this case, specimens from several plants will be analyzed using several scientific equip-
ment and tools. The measurement result will then be entered into a database through a biodiversity 
information system. Since multiple individuals work on the same specimen, reflected as the same rec-
ord in the database, it is necessary to ensure who and when data modification was performed. The 
assessment findings demonstrated that numerous data provenance sources might be captured by tak-
ing several database snapshots. Each source then drives the event detection process to generate re-
lated objects to be mapped to a schema to represent multiple types of  provenance entities uniformly. 
Based on the collected data provenance, temporal information will be generated automatically using 
rule-based reasoning. As a consequence, the created system can capture temporal data provenance to 
a great degree automatically throughout the data gathering process. Based on the provenance hierar-
chy (Herschel et al., 2017), the solution is able to model the highest degree possible, namely data 
provenance at the individual level.  

The solution was intended for generic biodiversity information systems, which possess a few limita-
tions, including: 

1. While a piece of  biodiversity data may have the needed information for provenance, an in-
formation system could also store several other relevant data. For instance, information 
about the individual who created or edited a data record may be stored and maintained in a 
separate data table. Most of  the provenance-relevant information exists in multiple data ta-
bles maintained by the information system. 

2. Most information systems maintain the most recent changes of  temporal information, such 
as the date on which a piece of  data was modified. Whenever numerous changes are con-
ducted, the information system will only record the most recent ones. 

In the future, we would like to increase the extraction rate of  the solution or even perform the ex-
traction in real-time, directly after a change in the database is detected. One promising solution is de-
ploying reactive rules (Paschke & Kozlenkov, 2009), which would trigger actions whenever the data-
base receives any updates. Furthermore, extending the existing schema would enable multiple tem-
poral-based data analyses on different types of  biodiversity data. Therefore, experimentation with 
multiple biodiversity information systems would extend the solution as an integral part of  a Big Data 
biodiversity management system.  
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